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Abstract

This is a synopsis of the presentation that I gave at the MIT LIDS Paths Ahead symposium in
November 2009.

1 Introduction

It is a given that our technological society is becoming increasingly data rich with a literal explosion of
diverse data sources. It is inconceivable that any individual could today keep track of the major axes of
science and technology in the same way that “les lumières” did during the enlightenment, e.g., think of the
polymat Newton, Pascal, and Gauss. Automated discovery methods like data mining have become essential
to help us filter and interpret the vast amount of data currently available. Such algorithms will be integrative
and be able to separate the relevant from the irrelevant. The field of systems biology is a prime example of
this trend, and some stunning advances in large scale integrative analysis have been recently reported, e.g.,
the Genomic Encyclopedia Project [5].

A basic foundation of scientific method is that any model, formula, or procedure must be testable. To
be testable it must be predictive: it must be capable of making educated guesses about outcomes that have
not yet been observed. Prediction depends on the underlying question or task, which all but determines the
objective function against which the predictive accuracy of different models can be compared. However, it is
hard to resist the temptation to dumb-down the objective function in order to make analysis tractable and
implementation simple. The intrinsic complexity of the problems typically encountered in signal processing
and machine learning make such simplification appealing. But we must resist whenever possible!

There are of course many paths to resist oversimplification that we take. For example, non-parametric or
semi-parametric approaches accompanied by empirical risk minimization strategies (active learning, multi-
task learning); decomposition of the objective function (modularity, sequential convexity); surrogate objective
functions (minimization or maximization of a bound); and performance-driven model-reduction and approx-
imation (PCA, manifold learning). These can be formulated as bottom-up (ensembles of simple models) or
top-down (pruning of complex models) approaches and each has advantages in different situations. Regard-
less of the approach, making an effort to quantitatively and analytically compare performance is essential.
However, analysis is extremely challenging in integrative predictive models. Methods must be developed to
address these challenges.

This summary is organized as follows. In the next section a motivating application is given that exempli-
fies the challenges faced by integrative predictive models. This is followed by discussions of the adequacy or
inadequacy of present tools and some ideas for future tool development. Finally a short conclusion is given.
A list of references cited in the document is included at the end.
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2 Motivating example: Predictive Health and Disease

The Wall Street Journal of November 3, 2009, contained an article entitled

“Is There a Case of the Flu in Your Future? With Pentagon Funding, Scientists Are Devising a
Test to Predict Who Will Get Sick Before the Symptoms Set In”

The article reported on a recently DARPA project called Predictive Health and Disease run by Program
Manager Col. Geoffrey Ling. According to the WSJ article, the long term objective of the PHD project is
“...to develop a portable device, about the size of a BlackBerry, that can quickly determine if someone is on
the way to being sick.” Since the device must be portable it is not practical for it collect and process massive
amounts of information. Thus a major research objective is to determine a small number of highly discrim-
inating biomarkers that could be quickly collected, assayed, and processed by such a device. Experiments
have been performed by the research investigators at Duke in order to generate data for analysts at Duke and
Michigan. These experiments, called challenge studies, consist of deliberate inoculation of volunteers with
a respiratory virus such as H3N2 and H1N1 followed by clinical observation of the subjects over a period
of several days. The clinical observations consist of symptoms, blood samples, and samples of other bodily
fluids taken at regular intervals. The principal challenge to the analysts is variable selection: to discover
what combination of fluids and biological assay, e.g., metabolomic, genomic, and proteomic expression pro-
files, will provide the best predictive power for predicting who will get sick. One can also consider exogenous
variables such as epidemiological information and social interactions of the subjects. Some of the initial
findings are described in a recent paper [6] for the H3N2 challenge study.

The amount of data available from these studies greatly exceeds the number of samples (subjects) avail-
able for performance assessment and prediction. Thus purely computational models for the predictor are
prone to overfitting and generalization error. A mix of computational and biological modeling is required.
Biological models are being developed by biology researchers for a number of functional pathways, e.g.,
innate immune and inflammatory response, but these are not yet organized in such a way that they can be
reliably implemented as “soft information,” as a constraint or penalty for biomarker discovery. The merging
of partial or unreliable information with observed data will be a key to making progress. However, as analysts
we know that to do this we require attribution of confidence or accuracy to this information. Unfortunately,
today such attributes are seldom available in practice.

3 Adequacy of present tools

There has recently been much work on developing tools for large scale variable selection. Most of these tools
rely on the parsimony of intrinsic sparsity: in a sea of variables only a very few of them are relevant. When
this is true one can achieve striking gains in computation and performance as compared with standard
variable selection such as PCA or exhaustive search. These methods use linear or additive model fitting
with soft constraints or penalties to guide the variable selection process. A primary difficulty is that these
sparse methods are not yet scalable to the huge state spaces and diverse multi-modal data sets that arise in
applications such as predictive health and disease.

Furthermore, the standard assumption of intrinsic sparsity is often inadequate for the predictive health
and disease application described above. This is due to the fact that there is a substantial amount of
redundancy in biological systems which means that there exist large groups of highly correlated variables.
Methods such as logistic group lasso [3] and elastic nets [7] are appropriate for classification-penalized variable
selection problems but do not easily accommodate the integration of unreliable biological model information.
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These methods also fail when there are “giant components” in the thresholded correlation graph, a situation
that occurs frequently in data from biological systems. What is needed is a new generation of methods that
can handle these limitations of current methodology.

Statistical analysis and prediction tools are motivated by models for the systematic component, e.g.,
mean response, and the random components, e.g., noise and other sources of variability away from the mean.
All models can be classified into three categories: parametric models, semi-parametric models, and non-
parametric models. Each of these categories have well developed procedures for estimation, classification
and detection. However, semi-parametric models appear to have received much less attention in signal
processing and machine learning communities. The promising recent methods of non-parametric machine
learning lie somewhere between these categories.

Virtually all prediction models suffer from the classic tradeoff between overfitting the noise and systematic
bias. To cope with this tradeoff a standard approach is to penalize for overfitting with a penalty that measures
the intrinsic complexity or degrees of freedom of the candidate model. This approach is an example of
decomposition or modularization of the overall objective function, e.g. probability of missclassification error:
variable selection is performed by maximizing the sum of two objective functions, one measuring goodness of
fit, e.g., hinge loss, and the other measuring complexity of the model, e.g., BIC. However, there is no theory
that guarantees that parsimony is modular or decomposable. Hence if variable selection is a primary goal,
as in predictive health and disease, it is worth considering other approaches to controlling overfitting error.

The final arbiter is the performance of the predictor and its relative merits and weaknesses with respect
to other predictors. In large scale problems involving many variables simulation is not a viable approach to
performance prediction. On the other hand, analytical approaches to performance prediction rely on tenuous
assumptions. The statisticians toolbox of strong and weak laws of large numbers, central limit theorems,
and concentration bounds provide asymptotic expressions for performance that are frequently interpretable
and intuitive. However, these expressions provide poor predictions of behavior when the sample size is small
relative to the model dimension. Such methods are also frequently only tractable when the observations are
i.i.d. and any uncertainty in the assumed model is well characterized. Extensions, or even a new class, of
analysis techniques is needed to overcome these deficiencies.

4 Tools of the future?

Crystal ball gazing is always dangerous when one tries to make predictions on scant prospective vision. I
will simply list two broad areas of interest to me.

Scalable integrated phenomenological and statistical models: Hybrid continuous/discrete/graph
valued models are required for many data integration tasks yet the theory is not yet well understood in the
context of scalable variable selection. Embedded simulation approaches such as particle filtering are effective
for non-linear models but are not scalable. Combinations of model homogenization (graphical models),
function approximation, and stochastic approximation methodologies might be considered. One modest step
in this direction is [4] in which PCA and gaussian graphical model approaches were combined for distributed
implementation of variable selection.

Integrated information-geometric uncertainty quantification: the natural domain to perform
information aggregation is the space of probability models (posterior distributions). When certain pseudo-
metrics are uses to measure distance between distributions, e.g., information divergences like Kullback-
Liebler, the space of probability models takes on some properties of a metric space, the well known in-
formation geometry of Amari. In this space one can perform visualization, estimation and dimensionality
reduction jointly in a natural manner that preserves information divergence. Some preliminary advances in
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this direction are reported in [1] and are applied in [2] to a computer vision problem.

5 Conclusion

Existing tools are often inadequate for dealing with demands of emerging application areas of signal pro-
cessing and machine learning. One emerging application is predictive health and disease that was discussed
in this paper. Some other applications with similar requirements are: tomographic information security,
multi modality database indexing and retrieval, and quantum molecular imaging. Such problems will bring
challenges and require extensions of existing solution approaches as well as some new ones. Such approaches
must be capable of dealing with a massive diversity of data with hopefully low latent dimension. They should
fully utilize physical models that are hopefully better characterized than they are today. They should more
reliably report on expected performance and provide better guarantees on accuracy and sensitivity. In many
cases a human in-the-loop will be required at many more places in the system than simply at the designer
and customer endpoints. This will be necessary for adapting the system to changing circumstances such as
model variability and evolution of user communities, which may include both cooperative and adversarial
components. For such humans-in-the-loop flexible information visualization techniques will be needed that
avoid information overload. Finally any viable approach will need to intelligently exploit available domain
knowledge, e.g., soft social net information, systems biology models, and behavioral pathways.
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