Convex Optimization A Journey of 60 Years

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
LIDS Paths Ahead Symposium, 2009

History and Prehistory

- Prehistory: Early 1900s-1949.
- Caratheodory, Minkowski, Steinitz, Farkas.
- Properties of convex sets and functions.
- Fenchel - Rockafellar era: 1949 - mid 1980s.
- Duality theory.
- Minimax/game theory (von Neumann).
- (Sub)differentiability, optimality conditions, sensitivity.
- Modern era - Paradigm shift: Mid 1980s - present.
- Nonsmooth analysis (a theoretical/esoteric direction).
- Algorithms (a practical/high impact direction).
- A change in the assumptions underlying the field.

History and Prehistory

- Prehistory: Early 1900s - 1949.
- Caratheodory, Minkowski, Steinitz, Farkas.
- Properties of convex sets and functions.
- Fenchel - Rockafellar era: 1949 - mid 1980s.
- Duality theory.
- Minimax/game theory (von Neumann).
- (Sub)differentiability, optimality conditions, sensitivity.
- Modern era - Paradigm shift: Mid 1980s - present.
- Nonsmooth analysis (a theoretical/esoteric direction).
- Algorithms (a practical/high impact direction).
- A change in the assumptions underlying the field.

History and Prehistory

- Prehistory: Early 1900s - 1949.
- Caratheodory, Minkowski, Steinitz, Farkas.
- Properties of convex sets and functions.
- Fenchel - Rockafellar era: 1949 - mid 1980s.
- Duality theory.
- Minimax/game theory (von Neumann).
- (Sub)differentiability, optimality conditions, sensitivity.
- Modern era - Paradigm shift: Mid 1980s - present.
- Nonsmooth analysis (a theoretical/esoteric direction).
- Algorithms (a practical/high impact direction).
- A change in the assumptions underlying the field.

Duality

- Two different views of the same object.
- Example: Dual description of signals.

- Dual description of closed convex sets

A union of points

An intersection of halfspaces

Dual Description of Convex Functions

- Define a closed convex function by its epigraph.
- Describe the epigraph by hyperplanes.
- Associate hyperplanes with crossing points (the conjugate function).

Primal Description
Values $f(x)$

Dual Description
Crossing points $f^{*}(y)$

Fenchel Duality Framework

$$
\min _{x}\left\{f_{1}(x)+f_{2}(x)\right\}
$$

Fenchel Primal and Dual Problem Descriptions

Primal Description
Vertical Distances

Dual Description
Crossing Point Differentials

Fenchel Duality

$$
\min _{x}\left\{f_{1}(x)+f_{2}(x)\right\}=\max _{y}\left\{f_{1}^{*}(y)+f_{2}^{*}(-y)\right\}
$$

A More Abstract View of Duality

- Back to the primal and dual description of a set M.
- Two simple prototype problems dual to each other.

A More Abstract View of Duality

- Back to the primal and dual description of a set M.
- Two simple prototype problems dual to each other.

Min-Common/Max-Crossing Duality

Abstract Framework for Duality Analysis

The Modern Era: Duality Coupled with Algorithms

- Traditional view: Pre 1990s
- LPs are solved by simplex method (G. Dantzig view).
- NLPs are solved by gradient/Newton methods (M. Powell view).
- Convex programs are special cases of NLPs.

Simplex

Duality

- Modern view: Post 1990s
- LPs are often solved by nonsimplex/convex methods.
- Convex problems are often solved by the same methods as LPS.
- "Key distinction is not Linear-Nonlinear but Convex-Nonconvex" (Rockafellar)

Duality
Gradient/Newton
Cutting plane
Interior point
Subgradient

The Modern Era: Duality Coupled with Algorithms

- Traditional view: Pre 1990s
- LPs are solved by simplex method (G. Dantzig view).
- NLPs are solved by gradient/Newton methods (M. Powell view).
- Convex programs are special cases of NLPs.

Simplex

Duality

Gradient/Newton

- Modern view: Post 1990s
- LPs are often solved by nonsimplex/convex methods.
- Convex problems are often solved by the same methods as LPs.
- "Key distinction is not Linear-Nonlinear but Convex-Nonconvex" (Rockafellar)

Methodological Trends

- Convex programs and LPs connect around duality and large-scale piecewise linear problems.
- New methods, renewed interest in old methods

Interior point methods
Subgradient methods
Polyhedral approximation/cutting plane methods Regularization/proximal methods

- Renewed emphasis on complexity analysis

Nesterov Nemirovski and others ...
Extrapolated gradient methods

Methodological Trends

- Convex programs and LPs connect around duality and large-scale piecewise linear problems.
- New methods, renewed interest in old methods

Interior point methods
Subgradient methods
Polyhedral approximation/cutting plane methods Regularization/proximal methods

- Renewed emphasis on complexity analysis

Nesterov, Nemirovski, and others
Extrapolated gradient methods

Methodological Trends

- Convex programs and LPs connect around duality and large-scale piecewise linear problems.
- New methods, renewed interest in old methods

Interior point methods
Subgradient methods
Polyhedral approximation/cutting plane methods Regularization/proximal methods

- Renewed emphasis on complexity analysis

Nesterov, Nemirovski, and others ...
Extrapolated gradient methods

Synergy Between Duality, Algorithms, and Applications

- Duality-based decomposition

Large-scale resource allocation
Lagrangian relaxation, discrete optimization
Stochastic programming

- Conic programming

Robust ontimization
Semidefinite programming

- Machine learning

Support vector machines
I regularization/Robust regression/Compressed sensing
Incremental methods

Synergy Between Duality, Algorithms, and Applications

- Duality-based decomposition

Large-scale resource allocation
Lagrangian relaxation, discrete optimization
Stochastic programming

- Conic programming

Robust optimization
Semidefinite programming

- Machine learning

Support vector machines
${ }_{1}$ regularization/Robust regression/Compressed sensing
Incremental methods

Synergy Between Duality, Algorithms, and Applications

- Duality-based decomposition

Large-scale resource allocation
Lagrangian relaxation, discrete optimization
Stochastic programming

- Conic programming

Robust optimization
Semidefinite programming

- Machine learning

Support vector machines
I_{1} regularization/Robust regression/Compressed sensing Incremental methods

Speculation - What's Next?

- Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

- New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).
Reduced space approximations. Sampling mechanisms.

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Speculation - What's Next?

- Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

- New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).
Reduced space approximations.
Sampling mechanisms.

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Speculation - What's Next?

- Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

- New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).
Reduced space approximations.
Sampling mechanisms.

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Speculation - What's Next?

- Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

- New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).
Reduced space approximations.
Sampling mechanisms.

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Fenchel, Dantzig, Rockafellar

Werner Fenchel

George Dantzig

Terry Rockafellar

Paul Tseng, 1959-2009

