Convex Optimization A Journey of 60 Years

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

LIDS Paths Ahead Symposium, 2009

History and Prehistory

- Prehistory: Early 1900s 1949.
 - Caratheodory, Minkowski, Steinitz, Farkas.
 - Properties of convex sets and functions.
- Fenchel Rockafellar era: 1949 mid 1980s.
 - Duality theory.
 - Minimax/game theory (von Neumann).
 - (Sub)differentiability, optimality conditions, sensitivity.
- Modern era Paradigm shift: Mid 1980s present.
 - Nonsmooth analysis (a theoretical/esoteric direction).
 - Algorithms (a practical/high impact direction)
 - A change in the assumptions underlying the field

History and Prehistory

- Prehistory: Early 1900s 1949.
 - Caratheodory, Minkowski, Steinitz, Farkas.
 - Properties of convex sets and functions.
- Fenchel Rockafellar era: 1949 mid 1980s.
 - Duality theory.
 - Minimax/game theory (von Neumann).
 - (Sub)differentiability, optimality conditions, sensitivity.
- Modern era Paradigm shift: Mid 1980s present.
 - Nonsmooth analysis (a theoretical/esoteric direction).
 - Algorithms (a practical/high impact direction).
 - A change in the assumptions underlying the field

History and Prehistory

- Prehistory: Early 1900s 1949.
 - Caratheodory, Minkowski, Steinitz, Farkas.
 - Properties of convex sets and functions.
- Fenchel Rockafellar era: 1949 mid 1980s.
 - Duality theory.
 - Minimax/game theory (von Neumann).
 - (Sub)differentiability, optimality conditions, sensitivity.
- Modern era Paradigm shift: Mid 1980s present.
 - Nonsmooth analysis (a theoretical/esoteric direction).
 - Algorithms (a practical/high impact direction).
 - A change in the assumptions underlying the field.

Duality

- Two different views of the same object.
- Example: Dual description of signals.

Dual description of closed convex sets

A union of points

An intersection of halfspaces

Dual Description of Convex Functions

- Define a closed convex function by its epigraph.
- Describe the epigraph by hyperplanes.
- Associate hyperplanes with crossing points (the conjugate function).

Primal Description

Values f(x)

Dual Description

Crossing points $f^*(y)$

Fenchel Duality Framework

$$\min_{x} \left\{ f_1(x) + f_2(x) \right\}$$

Fenchel Primal and Dual Problem Descriptions

Primal Description Vertical Distances Dual Description Crossing Point Differentials

Fenchel Duality

$$\min_{x} \{f_1(x) + f_2(x)\} = \max_{y} \{f_1^*(y) + f_2^*(-y)\}\$$

A More Abstract View of Duality

- Back to the primal and dual description of a set *M*.
- Two simple prototype problems dual to each other.

A More Abstract View of Duality

- Back to the primal and dual description of a set M.
- Two simple prototype problems dual to each other.

Min-Common/Max-Crossing Duality

Abstract Framework for Duality Analysis

The Modern Era: Duality Coupled with Algorithms

- Traditional view: Pre 1990s
 - LPs are solved by simplex method (G. Dantzig view).
 - NLPs are solved by gradient/Newton methods (M. Powell view).
 - Convex programs are special cases of NLPs.

- Modern view: Post 1990s
 - LPs are often solved by nonsimplex/convex methods.
 - Convex problems are often solved by the same methods as LPs.
 - "Key distinction is not Linear-Nonlinear but Convex-Nonconvex" (Rockafellar

The Modern Era: Duality Coupled with Algorithms

- Traditional view: Pre 1990s
 - LPs are solved by simplex method (G. Dantzig view).
 - NLPs are solved by gradient/Newton methods (M. Powell view).
 - Convex programs are special cases of NLPs.

- Modern view: Post 1990s
 - LPs are often solved by nonsimplex/convex methods.
 - Convex problems are often solved by the same methods as LPs.
 - "Key distinction is not Linear-Nonlinear but Convex-Nonconvex" (Rockafellar)

Methodological Trends

- Convex programs and LPs connect around duality and large-scale piecewise linear problems.
- New methods, renewed interest in old methods
 Interior point methods
 Subgradient methods
 Polyhedral approximation/cutting plane methods
 Regularization/proximal methods
- Renewed emphasis on complexity analysis
 - Nesterov, Nemirovski, and others ... Extrapolated gradient methods

Methodological Trends

- Convex programs and LPs connect around duality and large-scale piecewise linear problems.
- New methods, renewed interest in old methods
 Interior point methods
 Subgradient methods
 Polyhedral approximation/cutting plane methods
 Regularization/proximal methods
- Renewed emphasis on complexity analysis
 - Nesterov, Nemirovski, and others ... Extrapolated gradient methods

Methodological Trends

- Convex programs and LPs connect around duality and large-scale piecewise linear problems.
- New methods, renewed interest in old methods
 Interior point methods
 Subgradient methods
 Polyhedral approximation/cutting plane methods
 Regularization/proximal methods
- Renewed emphasis on complexity analysis
 - Nesterov, Nemirovski, and others ... Extrapolated gradient methods

Synergy Between Duality, Algorithms, and Applications

Duality-based decomposition

Large-scale resource allocation Lagrangian relaxation, discrete optimization Stochastic programming

Conic programming

Robust optimization Semidefinite programming

Machine learning

Support vector machines /1 regularization/Robust regression/Compressed sensing Incremental methods

Synergy Between Duality, Algorithms, and Applications

Duality-based decomposition

Large-scale resource allocation Lagrangian relaxation, discrete optimization Stochastic programming

Conic programming

Robust optimization Semidefinite programming

Machine learning

Support vector machines /₁ regularization/Robust regression/Compressed sensing Incremental methods

Synergy Between Duality, Algorithms, and Applications

Duality-based decomposition

Large-scale resource allocation Lagrangian relaxation, discrete optimization Stochastic programming

Conic programming

Robust optimization Semidefinite programming

Machine learning

Support vector machines I_1 regularization/Robust regression/Compressed sensing Incremental methods

Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).

Reduced space approximations.

Sampling mechanisms

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).

Reduced space approximations.

Sampling mechanisms.

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).

Reduced space approximations.

Sampling mechanisms.

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Very large problems/new applications.

Problems with network overlays (e.g., smart grids). Huge data sets in machine learning.

New approaches to large size and complexity.

Approximate dynamic programming paradigm (e.g., LP-based dynamic programming).

Reduced space approximations.

Sampling mechanisms.

- Better hardware/better algorithms multiplier effect?
- A new paradigm?

Fenchel, Dantzig, Rockafellar

Werner Fenchel

George Dantzig

Terry Rockafellar

Paul Tseng, 1959-2009

