

Complex Network Architecture

- Is there hope of a theory?
- Are there even informative case studies?
- Is there anything but "hack and ship"?
- Hiding ignorance behind obfuscation?

Other Influences Not Here Today

- Biology/Medicine (Savageau, G&K, Mattick, Csete, Arkin, Alon, Caporale, de Duve, Exerc Physio, Acute Care, etc etc...)
- Internet (Kelly/Low, Willinger, Clark, Wroclawski, Day, Chang, etc etc)
- Architecture (Alexander, Salingeros,...)
- Aerospace (many, Maier is a good book)
- Philosophy/History (Fox Keller, Jablonka&Lamb)
- Physics/ecology (Carlson)
- Management (Baldwin,...)
- Resilience/Safety/Security Engineering/Economics (Wood, Anderson, Leveson, ...)

Essential ideas: Architecture

Robust yet fragile

Question

Constraints that deconstrain

Answer

Question: Human complexity

Robust

- ③ Efficient, flexible metabolism
- Regeneration & renewal
- ③ Rich microbial symbionts
- Immune systems
- Complex societies
- Advanced technologies

Yet Fragile

- $\ensuremath{\mathfrak{S}}$ Obesity and diabetes
- $\ensuremath{\mathfrak{S}}$ Cancer
- ③ Parasites, infection
- ⊗ Inflammation, Auto-Im.
- Epidemics, war, ...
- Catastrophic failures

Mechanism?

Robust

- ③ Efficient, flexible metabolism
- ③ Regeneration & renewal
 - Sat accumulation
 - Insulin resistance
 - Inflammation

Fluctuating energy

Yet Fragile

- $\ensuremath{\mathfrak{S}}$ Obesity and diabetes
- S Cancer
 - ℬ Fat accumulation
 - Insulin resistance
 - Inflammation

Static energy

Implications/ Generalizations

Robust

- © Efficient, flexible metabolism
- © Rich microbial symbionts
- © Immune systems
- © Regeneration & renewal
- Complex societies
- Advanced technologies

Yet Fragile

- Obesity and diabetes
- $\ensuremath{\mathfrak{S}}$ Parasites, infection
- [⊗] Inflammation, Auto-Im.
- Cancer
- Epidemics, war, ...
- ▲ Catastrophic failures
- Fragility = Hijacking, side effects, unintended... of mechanisms evolved for robustness
 Complexity is driven by control, robust/fragile tradeoffs
- Math: New robust/fragile conservation laws

 Resilience/safety/security Engineering/Economics: "Human error" and "human nature" is often a symptom of bad system architecture

Infrastructure networks?

- Power
- Transportation
- Water
- Waste
- Food
- Healthcare
- Finance

All examples of"bad" architectures:UnsustainableHard to fix

Where do we look for "good" examples?

"Architecture" in practice

- Internet, biology, energy, manufacturing, transportation, water, food, waste, law, etc
- Many architectures are unsustainable/hard to fix What does "architecture" mean here?
- Persistent, ubiquitous, global features
- Constrains the possible (for good or bad)
- Enables/prevents innovation, sustainability, etc,
- Theory is fragmented, incoherent, incomplete
- Needs rigor and relevance
- "Constraints that deconstrain" and "facilitated variation" (Gerhart and Kirschner)

Astrom bridge

Essential ideas: Architecture

Question

Constraints that deconstrain

Answer

Simplest case studies

Internet

- Successful architectures
- Robust, evolvable
- Universal, foundational
- Accessible, familiar
- Unresolved challenges
- New theoretical frameworks
- Boringly retro?

Simplest case studies

Internet

• Universal, foundational

• Universal, foundational

Two lines of research:

1. Patch the existing Internet architecture so it handles its new roles

Technosphere

Internet

- Real time
- Control **over** (not just of) networks
- Action in the physical world
- Human collaborators and adversaries
 - Net-centric *everything*

Cyber-Physical Theories

- Thermodynamics
- Communications
- Control
- Computation

Cyber

- Thermodynamics
- Communications
- Control
- Computation

- Thermodynamics
- Communications
- Control
- Computation

Internet

Bacteria

Case studies

- Thermodynamics
- Communications
- Control
- Computation

- Thermodynamics
- Communications
- Control
- Computation

Promising unifications

Modern theory and the Internet

Levels of understanding

Verbal/cartoon

Data and statistics

Modeling and simulation

Analysis

Synthesis

Topics

Recent progress (1995-)

	Traffic	Topology	C&D	Layering	Architect.
Cartoon					
Data/stat					
Mod/sim					
Analysis					
Synthesis					

Recent progress (1995-)

	Traffic	Topology	C&D	Layering	Architect.
Cartoon					
Data/stat					
Mod/sim					
Analysis					
Synthesis					

Two lines of research:

- 1. Patch the existing Internet architecture
- 2. Fundamentally rethink network architecture

	Traffic	Topology	C&D	Layering	Architect.
Cartoon					
Data/stat					?
Mod/sim					?
Analysis					?
Synthesis					?

Fundamentally rethink network architecture

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamic, stochastic
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution
- How the parts work?

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Focus on bacterial biosphere

In the real (vs virtual) world

What matters:

• Action

What doesn't:

- Data
- Information
- Computation
- Learning
- Decision

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, selforganized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Focus on bacterial biosphere

Communications

Layers (Net) Computer

Ancient network architecture: "Bell-heads versus Net-heads"

Non-networked Systems

Network requirements

Geographically local

Layered solution

Constraints

Universal control

That deconstrain

That deconstrain

Control constrained

Constraints that deconstrain

And layers have sublayers

Theoretical framework: Constraints that deconstrain

- Optimization
- Optimal control
- Robust control
- Game theory
- Network coding

Cyber-Physical Theories

- Thermodynamics
- Communications
- Control
- Computation

Homework: Reinterpret your favorite separation theorem as "layering" Architecture is *not* graph topology.

Architecture facilitates arbitrary graphs.

Academic stovepipes

EE, CS, ME, MS, APh, ChE, Bio, Geo, Eco, ...

"Multidisciplinary cross-sterilization"

New applications

Layering academia?

?????

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, selforganized criticality, etc

DNA - RNA - Protein

Network architecture?

Recursive control structure

Top to bottom

- Metabolically costly but fast to cheap but slow
- Special enzymes to general polymerases
- Allostery to regulated recruitment
- Analog to digital
- High molecule count to low (noise)

Rich Tradeoffs

Layered Brain (Hawkins)?

Why this is all wrong

- Network science and emergulent chaocritiplexity
- Peta-phylia, the singularity is near
- Earth is <10K yrs old, evolution a hoax
- The rapture is near
- Global warming and "unsustainability" a hoax
- It's so stupid it isn't even wrong

Inside every cell

Core metabolic bowtie

If we drew the feedback loops the

That deconstrain

Running only the top layers

Mature red blood cells live 120 days

"metabolism first" origins of life?

Reactions

Flow/error

Protein level

Reactions

Flow/error

RNA level

Reactions

Flow/error

DNA level

RNA

Top to bottom

- Metabolically costly but fast to cheap but slow
- Special enzymes to general polymerases
- Allostery to regulated recruitment
- Analog to digital
- High molecule count to low (noise)

Rich Tradeoffs

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Autocatalytic feedback

What theory is relevant to these more complex feedback systems?

"Central dogma"

Protein

This is just charging and discharging

Recursive control structure

Horizontal gene transfer What is locus of early HGT and evolution? Eukaryotes Shared **Protocols** Animals Fungi **Plants** Archaea Bacteria Algae Bacteria that gave rise to chloroplasts **Architecture**? Bacteria that gave rise to mitochondria orarchaeota Hyperthermophilie bacteria **Common Ancestral Community of Primitive Cells**

fan-in of diverse inputs fan-out of diverse outputs

Diverse **Highly robust** function Diverse Evolvable Deconstrained Diverse Robust Constraints that <u>components</u> yet fragile deconstrain

Universal Control

- Highly fragile
- Universal
- Frozen

universal

carriers

- Constrained
- Hijacking

What theory is relevant to these more complex feedback systems?

Autocatalytic

Control

Caution: mixed cartoon

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| d\omega \ge 0$$

$$\int_{-\infty}^{\infty} \ln \left| S \quad j\omega \right| d\omega = \int_{-\infty}^{\infty} \ln \left| \frac{X \quad j\omega}{U \quad j\omega} \right| d\omega$$

$$= \int_{-\infty} \ln |X| \, j\omega \, |d\omega - \int_{-\infty} \ln |U| \, j\omega \, |d\omega|$$

Entropy rates

Hard limits

[a system] can have [a property] *robust* for [a set of perturbations]

Yet be *fragile for*

[a different property]

Or [a different perturbation]

Robust yet fragile = fragile robustness

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

Hard limits

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S\right| j\omega \left|d\omega \ge 0\right|$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| \frac{z}{z^{2}+\omega^{2}}d\omega \ge \ln\left|\frac{z+p}{z-p}\right|$$

The plant can make this tradeoff worse.

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right|d\omega \ge 0$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| \frac{z}{z^{2}+\omega^{2}}d\omega \ge \ln\left|\frac{z+p}{z-p}\right|$$

All controllers: \geq Biological cells: =

$$z = \frac{k}{q}$$
 $p = RHPzero s^2 + q\alpha + k s - \alpha k$

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln|S| j\omega |d\omega \ge 0$$
$$\frac{1}{\pi}\int_{0}^{\infty}\ln|S| j\omega |\frac{z}{z^{2}+\omega^{2}}d\omega \ge \ln\frac{z+p}{z-p}$$

Small *z* is *bad*.

 $p = RHPzero s^2 + q\alpha + k s - \alpha k$

Small *z* is *bad* (oscillations and crashes)

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| \frac{z}{z^{2}+\omega^{2}}d\omega \ge \ln\left|\frac{z+p}{z-p}\right|$$

Small z =

- small k and/or
- large q

Correctly predicts conditions with "glycolytic oscillations"

$$z = \frac{k}{q}$$

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| d\omega \ge 0$$

$$\int_{-\infty}^{\infty} \ln \left| S \quad j\omega \right| d\omega = \int_{-\infty}^{\infty} \ln \left| \frac{X \quad j\omega}{U \quad j\omega} \right| d\omega$$

$$= \int_{-\infty} \ln |X| \, j\omega \, |d\omega - \int_{-\infty} \ln |U| \, j\omega \, |d\omega|$$

Entropy rates

Hard limits

Network motifs in the transcriptional regulation network of *Escherichia coli*

Shai S. Shen-Orr¹, Ron Milo², Shmoolik Mangan¹ & Uri Alon^{1,2}

Network motifs in the transcriptional regulation network of *Escherichia coli*

Shai S. Shen-Orr¹, Ron Milo², Shmoolik Mangan¹ & Uri Alon^{1,2}

mRNA activity is actively controlled.

The greatest complexity here is primarily in the control of rates

Gly G1P G6P That is not always the case. F6P Gly3p ATP 13BPG 3PG Oxa PEP 2PG Pyr ACA TCA VADE Cit

Allosteric **Trans***

All at the DNA layer

Network motifs in the transcriptional regulation network of *Escherichia coli*

