Introduction to the Control and Optimization Panel Discussion

Keith Glover
Schedule

• Keith Glover – Introduction
• Pablo Parillo – Games and Distributed Decisions
• Stephen Boyd – Optimization and Decisions
• Albert Benveniste – Componentizing and Distributing Feedback
• Jonathan How – Grand Challenges
• Richard Murray – Control of Complex Systems
• Vincent Blondel – Optimization (What’s hard?)
Essence of Control?

- Feedback
- Uncertainty
- The notion of State
- Approximation
- Verification
Approximation

- Modelling the phenomena
 - e.g. HCCI combustion model
 - 2 species + 2 reactions
 - 157 species + 1552 reactions
Approximation

• Modelling the phenomena
• Approximation of Math model with a simpler one

 e.g. Model Reduction
 - H-infty norm
 - approx. with Hankel norm
 - get bounds
 - balanced truncation
 - frequency weighted??
Approximation

- Modelling the phenomena
- Approximation of Math model with a simpler one
- Approximation of objectives

 e.g. choice of norm, weights etc. Typically choose one objective that addresses the most important features and then ‘patch it up’ to address other criteria. e.g.

 - H-infty norm addressing dynamics/robustness with anti-windup for saturation.
 - MPC for input saturation with robustness add-on/analysis.
 - Adaptive control with jacketing software.
Approximation

• Modelling the phenomena
• Approximation of Math model with a simpler one
• Approximation of objectives
• Approximate optimisation

e.g.
- just use small number of iterations in real-time optimisation. (Boyd)
- Sum of Squares bounds (Parillo)
Approximation

- Modelling the phenomena
- Approximation of Math model with a simpler one
- Approximation of objectives
- Approximate optimisation
- Bounds on resulting behaviour.

All the available analysis tools from IQC’s, LMI’s, hybrid systems … preferably as part of the design but also post-facto for any ad hoc design.
Verification/Certification

- Bounds on behaviour as before.
- Finite state elements
- Code validation (CS).
- Failure detection, reconfig.
- In aerospace and automotive, certification is perhaps the biggest obstacle to real-time optimisation.
Legitimate Academic Pursuits

- Deeper understanding of (feedback) systems.
- e.g. limitations in general (Bode)
- Specific behaviour (climate change, human biology)
Summary: Limitations due to channel capacity

System:

\[x_1 \xrightarrow{u_t} x_1 + 1 \]
\[x_1 \xrightarrow{x_1/\tau_1} x_1 - 1 \]

\[dx_1 = u_t dt + \sqrt{2\langle x_1 \rangle / \tau_1} dw \]

Sensor:

\[x_2 \xrightarrow{\alpha x_1} x_2 + 1 \]
\[x_2 \xrightarrow{x_2/\tau_2} x_2 - 1 \]

where \(u_t = f(\{x_2(t') : t' < t\}) \)

\[\frac{\sigma_1^2}{\langle x_1 \rangle} \geq \frac{1}{\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{N_2}{N_1}}} \]

\[\approx \begin{cases}
1, & N_2 < N_1 \\
\sqrt{\frac{N_1}{N_2}}, & N_2 > N_1
\end{cases} \]

where \(N_2 = \langle x_2 \rangle \tau_1 / \tau_2 = \) no of molecules of \(X_2 \) made per lifetime of \(X_1 \).
\(N_1 = \langle x_1 \rangle = \) no of molecules of \(X_1 \) made per lifetime of \(X_1 \).
Legitimate Academic Pursuits?

- Deeper understanding of (feedback) systems.
- Design methodologies for certain application areas.
- Robust control paradigm
- MPC
Legitimate Academic Pursuits?

- Deeper understanding of (feedback) systems.
- Design methodologies for certain application areas.
- Algorithmic advances and limitations.

- Bounds
- NP hard
- Speed/efficiency
Stability Analysis Using Sum of Squares

Nonlinear system:

\[\dot{x} = f(x), \quad x \in \mathbb{R}^n, \quad x(0) = X_0 \]

Construct \(V(x), \varphi_1(x) > 0, \varphi_2(x) > 0 \) s.t.

- \(V(x) - \varphi_1(x) \) is SOS
- \(-\frac{dV}{dx} f(x) - \varphi_2(x) \) is SOS

Then use SOSTOOLS.

Problem:

The size of the underlying SDP grows rapidly as \(n \) increases. Currently \(n > 8 \) is difficult without taking into account system structure (e.g., sparsity, symmetry).

Example: Ecological network with community matrix \(A \) and species birth rate \(b \):

\[\dot{x}_i = x_i \left(b_i - x_i - \sum_{j=1}^{16} A_{ij} x_j \right), \quad x \in \mathbb{R}^{16} \]

Decompose system so as to minimize energy flow between subsystems:

Smaller SDP is solved for composite system than for the complete system.

Keith Glover LIDS 2009
Legitimate Academic Pursuits

• Deeper understanding of (feedback) systems.
• Design methodologies for certain application areas.
• Algorithmic advances and limitations.
• Verification tools.
Legitimate Academic Pursuits?

- Deeper understanding of (feedback) systems.
- Design methodologies for certain application areas.
- Algorithmic advances and limitations.
- Verification tools.
- Case Studies

- Demonstrators of power/applicability of methods – flight control
- Demonstrators of potential technological solutions – DARPA grand challenges.
- Solving specific problems for a practitioner.
- Identifying more generic open problems – hybrid systems.
\begin{align*}
\dot{x} &= f(x, \theta), \quad x \in X \subseteq \mathbb{R}^{n_x}, \\
\theta &\in \Theta \subseteq \mathbb{R}^{n_{\theta}}, \quad x(0) \in X_0, \\
\text{Unsafe states: } x &\in X_u
\end{align*}

Find \(B(x) \) satisfying:
\begin{align*}
B(x) &< 0 \text{ in } X_0 \\
B(x) &\geq 0 \text{ in } X_u \\
\frac{\partial B}{\partial x} f(x, \theta) &\leq 0 \text{ for } x \in X, \\
\theta &\in \Theta
\end{align*}

- 10-dimensional nonlinear model, with 6 modes.
- A function \(B(x) \) was constructed, which guarantees controller will not result in unsafe operation for all uncertainty combinations.

IEEE TCT, Nov 07

Keith Glover LIDS 2009
Malcolm Smith – the inerter

Williams FW14B driven by Nigel Mansell in 1992
The first championship winning car to use active suspension

The Inerter — Origin of the Idea

- Applied Work on Active Suspension (Formula One)
- Theory Work on Active Suspension
- Theory Work on Passive Suspension

... a curious lack of symmetry in basic modelling ...
A new correspondence for network synthesis

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{v_2}</td>
<td>i_{v_1}</td>
</tr>
<tr>
<td>$\frac{dF}{dt} = k(v_2 - v_1)$</td>
<td>$\frac{di}{dt} = \frac{1}{L}(v_2 - v_1)$</td>
</tr>
<tr>
<td>F_{v_2}</td>
<td>i_{v_1}</td>
</tr>
<tr>
<td>$F = b \frac{d(v_2 - v_1)}{dt}$</td>
<td></td>
</tr>
<tr>
<td>$F = c(v_2 - v_1)$</td>
<td>$i = \frac{1}{R}(v_2 - v_1)$</td>
</tr>
</tbody>
</table>

Y(s) = admittance = \frac{1}{impedance}

First Formula One Grand Prix for the inverter

Raced by Kimi Raikkonen at the 2005 Spanish Grand Prix in Barcelona.

Raikkonen won the race to give McLaren their first victory of the 2005 season.
Schedule

- Keith Glover – Introduction
- Pablo Parillo – Games and Distributed Decisions
- Stephen Boyd – Optimization and Decisions
- Albert Benveniste – Componentizing and Distributing Feedback
- Jonathan How – Complex Applications
- Richard Murray – Control of Complex Systems
- Vincent Blondel – Optimization (What’s hard?)