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A Machine Learning Syllabus 
•  Classification 
•  Regression 
•  Clustering 
•  Dimensionality reduction 
•  Feature selection 
•  Cross-validation, bootstrap 
•  Hidden Markov models, graphical models 
•  Visualization and nonlinear dimensionality reduction 
•  Collaborative filtering 
•  Reinforcement learning 
•  Time series, sequential hypothesis testing, anomaly detection 
•  Nonparametric Bayesian methods 
•  Active learning, experimental design 
•  Multi-class classification, structured classification 
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Some Recent Success Stories 

•  Classification 
•  Kernel methods and manifold learning 
•  Topic models 
•  Graphical models 
•  Nonparametrics 
•  Bayesian nonparametrics 
•  Reinforcement learning 
•  Applications in computational vision, natural 

language processing, information retrieval, robotics, 
computational biology, control of data centers, etc 



Current Trends and Issues in 
Inference and Decision Making 

•  Nonparametric Bayes 
•  Massive data sets 
•  End-to-end objective functions 
•  Objective Bayes 
•  Sparsity and beyond 
•  Connections to control theory 



Bayesian Nonparametrics 
•  Stochastic processes as priors; i.e., prior 

distributions on objects such as: 
•  partititions (Dirichlet processes) 
•  trees and graphs (nested and hierarchical DPs) 
•  combinatorial state spaces (Beta processes) 
•  hazard functions (Beta processes) 
•  regression functions (Gaussian processes) 
•  distribution functions (subordinators) 
•  measures (completely random measures) 

•  Somewhat surprisingly, there are efficient ways to 
update these priors into posteriors 
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•  Somewhat surprisingly, there are efficient ways to 
update these priors into posteriors 
•  but you need to know about sigma algebras to understand 

how that’s possible 



Bayesian Nonparametrics 

•  Can cope in principle with a number of classical 
difficulties 
•  no more fixed-length feature vectors 
•  cardinality of state space can be unknown a priori 
•  combinatorial state spaces 
•  robustness to distributional assumptions 
•  easy to make use of hierarchies (e.g., “transfer learning”) 
•  nonstationarity (in space and time) 

•  Some real success stories 
•  protein modeling 
•  statistical genetics 
•  speech diarization 
•  motion capture analysis 
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Motion Capture Analysis 

  Goal: Find coherent “behaviors” in the time series that 
transfer to other time series (e.g., jumping, reaching) 



Motion Capture Results 



Completely Random Measures 

•  Completely random measures are measures on a set      that 
assign independent mass to nonintersecting subsets of 
•  e.g., Brownian motion, gamma processes, beta processes, 

compound Poisson processes and limits thereof 
•  (The Dirichlet process is not a completely random measure 

•  but it's a normalized gamma process) 
•  Completely random measures are discrete wp1 (up to a 

possible deterministic continuous component) 
•  Completely random measures are random measures, not 

necessarily random probability measures 

(Kingman, Pitman, etc) 



Completely Random Measures 
•  Consider a non-homogeneous Poisson process on                , with 

rate function obtained from some product measure 
•  Sample from this Poisson process and connect the samples 

vertically to their coordinates in   
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Beta Processes 

•  The product measure is called a Levy measure 
•  For the beta process, this measure is defined on 

the product space                  and is as follows: 

•  And the resulting random measure can be 
written simply as: 

degenerate Beta(0,c) distribution" Base measure"



Beta Processes 
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Beta Process and Bernoulli 
Process 



BP-AR-HMM 

•  Beta process prior:  
•  sparsity 
•  encourages sharing 
•  allows variability 

•  Bernoulli process 
determines which 
states are used 



Massive Data Sets 

•  A massive embarassment 
•  The classical perspective in machine learning: each 

year our algorithms get better and better, and we 
can handle ever larger training sets 

•  But why can’t we handle arbitrarily large data sets 
now? 
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•  A massive embarassment 
•  The classical perspective in machine learning: each 

year our algorithms get better and better, and we 
can handle ever larger training sets 

•  But why can’t we handle arbitrarily large data sets 
now? 
•  need general methods (and theory) for backing off to 

simpler procedures as data accrue, so that statistical risk 
decreases under a fixed computational budget 

•  a “simpler procedure” may be a pre-processor that allows 
us to use more complex procedures cheaply 

•  need general methods (and theory) for throwing away data 



End-to-End Objective 
Functions 

•  A major current direction in machine learning:  given 
a system composed of modules, train the modules 
so as to minimize an overall loss 

•  E.g., dimension reduction in regression: 
•  old style:  compress with the SVD; build a kernel 

regression on the compressed representation 
•  new style:  find a surrogate for the regression that allows 

the compression to be adapted to the regression 
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•  A major current direction in machine learning:  given 
a system composed of modules, train the modules 
so as to minimize an overall loss 

•  E.g., dimension reduction in regression: 
•  old style:  compress with the SVD; build a kernel 

regression on the compressed representation 
•  new style:  find a surrogate for the regression that allows 

the compression to be adapted to the regression 
•  There is a general problem here that involves finding 

surrogates for optimizing certain kinds of losses in 
certain kinds of composite systems 
•  can this be a collaborative project with control theory? 
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Objective Bayes 

•  Bayesian methods have many favorable properties, 
but subjective Bayesian methods don’t scale 

•  The frequentist dictum: “Let the data speak” 
•  Objective Bayes is a unifying force in inference that 

uses frequentist tools in defining priors to achieve 
these goals 

•  Lovely connections to information theory 
•  In my view one of the major directions in statistics in 

the next few decades   



Sparsity and Beyond 

•  If there exists a sparse representation in some 
basis, we have an increasingly strong theory that 
guarantees that certain classes of algorithms can 
discover that representation 

•  I’ll let Martin W. elaborate 
•  It would be desirable to find such bases 

automatically 
•  Other concepts that allow us to make progress in the 

high-dimensional regime? 



Connections to Control Theory 
•  Control theory and statistics are two of the deepest 

disciplines around 
•  they go all the way from theory to practice; they embrace 

science and engineering 
•  they have provided the most useful insights in humankind’s 

first attempts to understand “intelligence” 



Connections to Control Theory 
•  Control theory and statistics are two of the deepest 

disciplines around 
•  they go all the way from theory to practice; they embrace 

science and engineering 
•  they have provided the most useful insights in humankind’s 

first attempts to understand “intelligence” 
•  They are complementary but they have been 

surprisingly loathe to embrace one another 



Connections to Control Theory 
•  Control theory and statistics are two of the deepest 

disciplines around 
•  they go all the way from theory to practice; they embrace 

science and engineering 
•  they have provided the most useful insights in humankind’s 

first attempts to understand “intelligence” 
•  They are complementary but they have been 

surprisingly loathe to embrace one another 
•  In the meantime, machine learning and optimization 

have been having quite a little love affair 



Connections to Control Theory 
•  Control theory and statistics are two of the deepest 

disciplines around 
•  they go all the way from theory to practice; they embrace 

science and engineering 
•  they have provided the most useful insights in humankind’s 

first attempts to understand “intelligence” 
•  They are complementary but they have been 

surprisingly loathe to embrace one another 
•  In the meantime, machine learning and optimization 

have been having quite a little love affair 
•  damned upstarts… 



Connections to Control Theory 
•  Control theory and statistics are two of the deepest 

disciplines around 
•  they go all the way from theory to practice; they embrace 

science and engineering 
•  they have provided the most useful insights in humankind’s 

first attempts to understand “intelligence” 
•  They are complementary but they have been 

surprisingly loathe to embrace one another 
•  In the meantime, machine learning and optimization 

have been having quite a little love affair 
•  damned upstarts… 

•  No, control isn’t just “statistics + optimization”, but 
that combination is a powerful one that should be a 
major part of the control landscape 


