# 44 YEARS WITH A SAGE OF OUR FIELD

- Reading Sanjoy's Newton Method's paper (early 1960's)
- Memorable first meeting in Cleveland, late 1965
- Joint visits to INRIA, Paris, 1970's
- "LIDS decision" dinner
- Frequent debates, often with George Zames et al.
- Visit to a Buddhist temple in China
- Many "philosophical" and some philosophical discussions



# PREDICTIONS OF ANOTHER SAGE IN THE 1960s

Chapter 6 "Learning Webs"

described what we recognize today as our virtual INTERNET communities and anticipated technologies to make them possible

# **A Continuum of Predictions**

- Challenges to Control, Santa Clara, CSS 1986
- Future Directions in Control Theory, SIAM 1988
- Future Directions in Systems and Control, Cascais, PT 2000
- Future Directions in Control in an Info Rich World, 2003
- Control Frontiers, Santa Barbara, May 2009
- Paths Ahead, MIT, November 2009

Should we "close the loop" to examine which of our earlier predictions have been confirmed?

# The Funding Pendulum Disturbance

In the 1970's – early 1980's:

- Hybrid cars, stratified IC engines (Ford)
- Rapid rail transport, people movers (DOT)
- Wind energy, conservation, power systems (DOE)

After that:

- SUV addiction killed car engine research
- Reagan discontinued relevant DOE projects
- Similar situation under Bush Sr., Clinton, Bush Jr. Now again:
  - Renewable energy, hybrid cars, smart grid...

# Survival of intellectually coherent long term research?

Look at the work of younger researchers...

# **Input-Output Approach to Networks**

Determine subsystem input/output properties compatible with network structure. Assign/verify these properties without relying on further knowledge of the network.



Passivity identified as an input/output property compatible with the coupling symmetry in these networks. (Wen & Arcak '04; Arcak '07)

New passivity designs of algorithms offer flexibility for robustness and adaptivity. Existing algorithms, such as Kelly's, appear as special cases.

#### Analysis of Biological Networks via Passivity

Decompose network into subsystems  $H_i$  and verify their passivity relative to network equilibrium  $x^*$ :

$$\dot{S}_i \leq (u_i - u_i^*)^T (y_i - y_i^*) - rac{1}{\gamma_i} ||y_i - y_i^*||^2$$

Define matrix:  $E := K - \text{diag} \{1/\gamma_1, \cdots, 1/\gamma_n\}$  and

ascertain global stability of  $x^*$  by finding a diagonal P > 0 s.t.  $E^T P + P E < 0$ 

#### **Passivity-based stability test:**

Recovers the local "secant" stability criterion used in biology for cyclic structures, and strengthens it to be a global test applicable to other structures.

#### (Arcak & Sontag '08)

Ensures stability of spatially uniform steady-state in reaction-diffusion PDEs. (Jovanovic, Arcak, Sontag '08)





## **Constructive Feedback Design for PDEs**

Use feedback transformations

to convert an intractable PDE into a well-studied PDE

In 3D Navier-Stokes, this novel closed-loop boundary control design, for the first time

- extinguished <u>turbulence</u> at any Reynolds number
- made <u>mathematics</u> tractable and explicit

Vazquez and Krstic (Birkhauser, 2007)

$$\vec{u}_t = \frac{1}{\text{Re}} \Delta \vec{u} - (\vec{u} \cdot \nabla) \vec{u} - \nabla p$$
$$0 = \text{div} \vec{u}$$

 $v_t = d(x)v_{xx} + a(x)v_x + r(x)v$ 

In reaction-advection-diffusion PDEs (Li-ion batteries), functional/spatial coeffs are *uncertain*. The new design

- derives parameterized feedback transformations
- constructs adaptive boundary control with boundary sensing for unstable and inf rel degree PDEs

Smyshlyaev and Krstic (Princeton U. Press, 2010)

## Nonlinear control in the presence of **Delays**

$$U(t) \longrightarrow delay \longrightarrow dX/dt = f(X,u) \longrightarrow$$

- Input delay of *any length*
- Nonlinear fbk laws with spatially causal (Volterra) operators of actuator state
- Appl.: multi-site hardware-in-the-loop testing over internet

Krstic (Birkhauser, 2009) Delay Compensation for Nonlinear, Adaptive, and PDE Systems

