Feedback in Information and Decision Systems

Grand Challenge: Understanding Large Networked Systems

Technological Networks (Internet Mapping Project, US power grid, UCLA CENS)

Social Networks

Biological Networks (JMDBase)

Brain Networks (Worsley et al, 2005)

Challenges:

- Inferring structure & function of the network
- Optimized design & resource allocation
- Pattern analysis & anomaly detection

Challenges for Information and Decision Systems

Measurement

impossible to measure/observe large networks everywhere and all the time

incomplete/missing and indirect data is the norm

Uncertainty

experiments/measurements are noisy, corrupted or otherwise unreliable

info-processing and decision-making must be robust to uncertainty

Diversity

data from disparate sources

integration of info from sensors, experiments, databases, human intell, etc.

Complexity

networked systems can be ultra-high dimensional

modeling/approximation is formidable, mathematically & computationally

Motivation: Systems Biology

(Ahlquist Lab, UW-Madison)

Drosophila RNAi screen identifies host genes important for influenza virus replication. Hao et al, Nature 2008.

- very noisy data
- determine virus replication network/pathways

Motivation: Systems Biology

How do they find the ~100 out of 13K genes that hijacked for virus replication from extremely noisy data?

Multistage Adaptive Experiments:

- **Stage 1**: assay all 13K genes, twice; keep all with significant fluorescence in one or both assays for 2nd stage $(13K \rightarrow 1K)$
- **Stage 2**: assay remaining 1K genes, 6-12 times; retain only those with statistically significant fluorescence $(1K \rightarrow 100)$

Next step: test *m*-fold gene deletion strains... $\binom{13000}{2} \approx 85,000,000!$

Feedback in Info-Processing and Decision-Making

Given: A collection of models or hypotheses \mathcal{F} . Goal: Identify correct/best model $f^* \in \mathcal{F}$ from experimental data. Optimize: Minimize number of experiments/measurements.

Let $N := N(\epsilon, \mathcal{F}, P)$ be the ϵ -covering number of \mathcal{F} wrt measure P. Suppose each measurement/experiment yields K bits.

Is it possible to learn an ϵ -good approximation to f^* from $O(K^{-1} \log N)$ experiments/measurements? "Active Learning Using Arbitrary Binary Valued Queries," Kulkarni, Mitter, Tsitsiklis, Machine Learning, 11, 23-35 (1993)

In general, many more experiments are required, because some bits in each experiment are redundant. But sometimes, sequentially adaptive experiments or measurements can identify a near-optimal f in $O(K^{-1} \log N)$ steps.

Sequential Adaptive Experimentation

$$FDP(\widehat{S}) := \frac{|\widehat{S} \setminus S|}{|\widehat{S}|} = \frac{\# \text{ falsely discovered components}}{\text{total } \# \text{ discovered components}}$$
$$NDP(\widehat{S}) := \frac{|S \setminus \widehat{S}|}{|S|} = \frac{\# \text{ missed components}}{\# \text{ true non-zero components}}$$

To guarantee $\text{FDP}(\widehat{\mathcal{S}}) \xrightarrow{P} 0$, $\text{NDP}(\widehat{\mathcal{S}}) \xrightarrow{P} 0$ as $N \to \infty$, we require

J. Haupt, R. Castro and RN, "Distilled Sensing: Selective Sampling for Sparse Signal Recovery," AISTATS 2009

The Power of Feedback in Sensing and Data Selection

Image Reconstruction:

uniform sampling n points \Rightarrow error $\sim O(n^{-1/2})$ adaptive sampling n points \Rightarrow error $\sim O(n^{-2})$

Classification:

passive learning \Rightarrow sample complexity $n \sim 1/\text{err}$ active learning \Rightarrow sample complexity $n \sim \log(1/\text{err})$

Scientific and Engineering Discovery is a Closed-Loop Process

Do we have the right theory and methods for it ?

Paths forward:

- Closing the loop between data acquisition and analysis
- Do 'more with less' or 'less with more' data (sublinear complexity algorithms)
- Integrating disparate information sources (including humans)
- Man-machine systems

more information: www.ece.wisc.edu/~nowak