Theory in the Computational Era

Stephen Boyd Pablo A. Parrilo (alphabetical order)

What is Different Today?

- looking back at LIDS 40, 20 years ago
- what will be different 20 years from now?
- what is not (too) different: the (core) math

[we'll focus on control; but similar stories for many other areas]

Computing power

- Moore's law: various aggregate measures of computing ability double every 18–24 months or so
- and it's not going to stop (GPUs, multi-core, cloud, . . .)
- $1969 \to 1989 \to 2009$: $10^3 \times$ each step, $10^6 \times$ total no reason to doubt another $10^3 \times$ over next 20 years
- similar stories for sensing, networks, communications, . . .

Examples

computation	then	now (laptop)
$u = Kx$, $K \in \mathbf{R}^{10 \times 100}$	seconds	$\sim 1 \mu$ s
MPC (QP), 10 states, horizon 20	('80) 30s	$\sim 1 \text{ms}$
SVD of $A \in \mathbf{R}^{100 \times 100}$	('77) 10s	~ 2 ms

• advances in raw speed; and also algorithms

Some Immediate Uses

[of massive computing power]

- dynamic simulation with detailed models
- Monte Carlo
- approximate worst-case analysis (pessimization)
- computational prototyping
- data visualization

[these are by now standard R&D tools . . .]

What Constitutes a Solution?

[in the presence of huge computing resources]

- a formula or other 'analytical solution' (Black-Scholes, LQR, 2-Riccati)?
- a convex optimization problem?
- a polynomial-time algorithm?
- an algorithm that runs in 10s? (or 100μ s?)

Example: Control Laws and Design Methods

- PID
 - design by rules/hand tuning
 - implement in analog; handful of operations
- ullet state-space linear control (LQR, LQG, \mathbf{H}_{∞} , . . .)
 - solve AREs at design time
 - matrix-vector multiply at run time
- LMIs/SOS
 - solve nontrivial convex optimization problem at design time
 - run-time similar to state-space linear control
- MPC/RHC/CLF/ADP
 - solve nontrivial optimization problem at run time

- we like to think of these as advances in theory
- but they are enabled by Moore's law
- each involves a theory whose time has arrived

Meerkov's Law

written on Boyd's whiteboard, 1990 or so

understanding \times computing = 1

- "purpose of computing is insight, not numbers" (Hamming)
- computing gives numbers, not structure/architecture of solution
- computing solves problem instances, but doesn't give intuition

all valid points; how much of a problem depends on (sub)field, application/purpose, and evolves with time

The Bad and the Ugly

- while (it doesn't work) {tweak parameters; simulate}
- proof by matlab

The Good

- numerical experiments can suggest/motivate theory/understanding
 - phase transitions in combinatorial optimization (e.g., 3SAT)
 - ℓ_1 minimization for sparsity
 - turbo decoding / message-passing algorithms
 - MPC/RHC
- numerical experiments/experience can re-train intuition
- theory coupled with algorithms/computation can yield far more than either alone

Why Theory is (Even More) Important

[in the presence of huge computing resources]

- theory helps define the right abstractions, frame problems
 - only after this is done can we start computing
 - abstraction needed to handle complexity
- theory helps determine the viability of a computational strategy
 - e.g., convexity in optimization; polynomial-time algorithm

Computation Alone Won't Give You . . .

- theory gives guidance, intuition, ideas
 - e.g.: feedback; Lyapunov; DP; separation (as architecture); passivity
 - useful even when hypotheses don't hold, models wrong
- theory helps us develop *narratives* about systems
 - concepts for back-of-envelope calculations, intuition (controllability, condition number, CAPM, graph conductance, time-frequency trade-offs, . . .)
 - simple short stories we tell our children ('systems with RHP zeros are hard to control')

Actionable Theory

- theory with algorithmic teeth that can (and will) be applied/implemented
- what can be effectively computed is not obvious
- can actually do stuff
 - benefit of method/research is not abstract
 - can help relieve mild symptoms of analysis paralysis
 - huge help in transition, outreach

[non-actionable theory (scaling laws, negative results, performance limits, complexity analysis . . .) is also very useful

Blurring Discipline Boundaries

- control/estimation/ML/statistics/CS/OR . . .
 - ideas too powerful to be kept in 'control' (or other) subfield
- the good news: it's an exciting world
 - lots of opportunities (many outside academia)
- if boundaries go away, do we have (need?) an intellectual home?
 - pragmatic (nurturing young talent, . . .)
- an answer: you can have a home and be worldly too
 - speak a dialect (say, control theory)
 - and high BBC applied math (SIAM Review)

Education/Training

- focus on
 - ideas (concepts, abstractions, narratives, . . .)
 - together with algorithmics
- recognizing and developing computation-friendly structures
- learning theory in (partially) algorithmic context far richer
- broad exposure to neighboring disciplines, application areas

Moving Forward

- need to get out more often
 - export ideas (but not in dialect)
 - see more styles, approaches, applications
 - like travel, improves us
- need to embrace the algorithmic