Theory in the Computational Era

Stephen Boyd Pablo A. Parrilo
(alphabetical order)

LIDS Paths Ahead, November 2009

What is Different Today?

e looking back at LIDS 40, 20 years ago
e what will be different 20 years from now?

e what is not (too) different: the (core) math

[we'll focus on control; but similar stories for many other areas]

LIDS Paths Ahead, November 2009

Computing power

e Moore's law: various aggregate measures of computing ability double
every 18-24 months or so

e and it's not going to stop (GPUs, multi-core, cloud, . . .)

e 1969 — 1989 — 2009: 103x each step, 10%x total
no reason to doubt another 103x over next 20 years

e similar stories for sensing, networks, communications, . . .

LIDS Paths Ahead, November 2009

Examples

computation then now (laptop)
w= Kz, K ¢ R1x100 seconds ~ 1lus
MPC (QP), 10 states, horizon 20 ('80) 30s ~ 1lms
SVD of A € R!?0*100 ('77) 10s ~ 2ms

e advances in raw speed; and also algorithms

LIDS Paths Ahead, November 2009

Some Immediate Uses

[of massive computing power]

e dynamic simulation with detailed models

e Monte Carlo

e approximate worst-case analysis (pessimization)
e computational prototyping

e data visualization

[these are by now standard R&D tools . . .]

LIDS Paths Ahead, November 2009

What Constitutes a Solution?

[in the presence of huge computing resources]

e a formula or other ‘analytical solution’ (Black-Scholes, LQR, 2-Riccati)?
e a convex optimization problem?
e a polynomial-time algorithm?

e an algorithm that runs in 10s? (or 100us?)

LIDS Paths Ahead, November 2009 5

Example: Control Laws and Design Methods

e PID

— design by rules/hand tuning
— implement in analog; handful of operations

e state-space linear control (LQR, LQG, H., .. .)

— solve AREs at design time
— matrix-vector multiply at run time

e LMIs/SOS

— solve nontrivial convex optimization problem at design time
— run-time similar to state-space linear control

e MPC/RHC/CLF/ADP

— solve nontrivial optimization problem at run time

LIDS Paths Ahead, November 2009

e we like to think of these as advances in theory
e but they are enabled by Moore's law

e each involves a theory whose time has arrived

LIDS Paths Ahead, November 2009

Meerkov’s Law

written on Boyd's whiteboard, 1990 or so

understanding X computing = 1

e “purpose of computing is insight, not numbers” (Hamming)
e computing gives numbers, not structure/architecture of solution

e computing solves problem instances, but doesn't give intuition

all valid points; how much of a problem depends on (sub)field,
application/purpose, and evolves with time

LIDS Paths Ahead, November 2009

The Bad and the Ugly

e while (it doesn’t work) {tweak parameters; simulate}

e proof by matlab

LIDS Paths Ahead, November 2009

The Good

e numerical experiments can suggest/motivate theory/understanding

— phase transitions in combinatorial optimization (e.g., 3SAT)
— f1 minimization for sparsity

— turbo decoding / message-passing algorithms

- MPC/RHC

e numerical experiments/experience can re-train intuition

e theory coupled with algorithms/computation can yield far more than
either alone

LIDS Paths Ahead, November 2009

10

Why Theory is (Even More) Important

[in the presence of huge computing resources]

e theory helps define the right abstractions, frame problems

— only after this is done can we start computing
— abstraction needed to handle complexity

e theory helps determine the viability of a computational strategy

— e.g., convexity in optimization; polynomial-time algorithm

LIDS Paths Ahead, November 2009 11

Computation Alone Won’t Give You . ..

e theory gives guidance, intuition, ideas

— e.g.: feedback; Lyapunov; DP; separation (as architecture); passivity
— useful even when hypotheses don’t hold, models wrong

e theory helps us develop narratives about systems

— concepts for back-of-envelope calculations, intuition
(controllability, condition number, CAPM, graph conductance,
time-frequency trade-offs, . . .)

— simple short stories we tell our children
(‘systems with RHP zeros are hard to control’)

LIDS Paths Ahead, November 2009 12

Actionable Theory

e theory with algorithmic teeth that can (and will) be
applied /implemented

e what can be effectively computed is not obvious

e can actually do stuff

— benefit of method/research is not abstract
— can help relieve mild symptoms of analysis paralysis
— huge help in transition, outreach

[non-actionable theory (scaling laws, negative results, performance limits,
complexity analysis . . .) is also very useful]

LIDS Paths Ahead, November 2009

13

Blurring Discipline Boundaries

e control/estimation /ML /statistics/CS/OR . . .

— ideas too powerful to be kept in ‘control’ (or other) subfield

e the good news: it's an exciting world

— lots of opportunities (many outside academia)

e if boundaries go away, do we have (need?) an intellectual home?

— pragmatic (nurturing young talent, . . .)

e an answer: you can have a home and be worldly too

— speak a dialect (say, control theory)
— and high BBC applied math (SIAM Review)

LIDS Paths Ahead, November 2009

14

Education/Training

e focus on

— ideas (concepts, abstractions, narratives, . . .)
— together with algorithmics

e recognizing and developing computation-friendly structures
e learning theory in (partially) algorithmic context far richer

e broad exposure to neighboring disciplines, application areas

LIDS Paths Ahead, November 2009

15

Moving Forward

e need to get out more often

— export ideas (but not in dialect)
— see more styles, approaches, applications
— like travel, improves us

e need to embrace the algorithmic

LIDS Paths Ahead, November 2009

16

