
Theory in the Computational Era

Stephen Boyd Pablo A. Parrilo
(alphabetical order)

LIDS Paths Ahead, November 2009



What is Different Today?

• looking back at LIDS 40, 20 years ago

• what will be different 20 years from now?

• what is not (too) different: the (core) math

[we’ll focus on control; but similar stories for many other areas]

LIDS Paths Ahead, November 2009 1



Computing power

• Moore’s law: various aggregate measures of computing ability double
every 18–24 months or so

• and it’s not going to stop (GPUs, multi-core, cloud, . . . )

• 1969 → 1989 → 2009: 10
3× each step, 10

6× total
no reason to doubt another 10

3× over next 20 years

• similar stories for sensing, networks, communications, . . .

LIDS Paths Ahead, November 2009 2



Examples

computation then now (laptop)

u = Kx, K ∈ R10×100 seconds ∼ 1µs

MPC (QP), 10 states, horizon 20 (’80) 30s ∼ 1ms

SVD of A ∈ R100×100 (’77) 10s ∼ 2ms

• advances in raw speed; and also algorithms

LIDS Paths Ahead, November 2009 3



Some Immediate Uses

[of massive computing power]

• dynamic simulation with detailed models

• Monte Carlo

• approximate worst-case analysis (pessimization)

• computational prototyping

• data visualization

[these are by now standard R&D tools . . . ]

LIDS Paths Ahead, November 2009 4



What Constitutes a Solution?

[in the presence of huge computing resources]

• a formula or other ‘analytical solution’ (Black-Scholes, LQR, 2-Riccati)?

• a convex optimization problem?

• a polynomial-time algorithm?

• an algorithm that runs in 10s? (or 100µs?)

LIDS Paths Ahead, November 2009 5



Example: Control Laws and Design Methods

• PID

– design by rules/hand tuning
– implement in analog; handful of operations

• state-space linear control (LQR, LQG, H∞, . . . )

– solve AREs at design time
– matrix-vector multiply at run time

• LMIs/SOS

– solve nontrivial convex optimization problem at design time
– run-time similar to state-space linear control

• MPC/RHC/CLF/ADP

– solve nontrivial optimization problem at run time

LIDS Paths Ahead, November 2009 6



• we like to think of these as advances in theory

• but they are enabled by Moore’s law

• each involves a theory whose time has arrived

LIDS Paths Ahead, November 2009 7



Meerkov’s Law

written on Boyd’s whiteboard, 1990 or so

understanding × computing = 1

• “purpose of computing is insight, not numbers” (Hamming)

• computing gives numbers, not structure/architecture of solution

• computing solves problem instances, but doesn’t give intuition

all valid points; how much of a problem depends on (sub)field,
application/purpose, and evolves with time

LIDS Paths Ahead, November 2009 8



The Bad and the Ugly

• while (it doesn’t work) {tweak parameters; simulate}

• proof by matlab

LIDS Paths Ahead, November 2009 9



The Good

• numerical experiments can suggest/motivate theory/understanding

– phase transitions in combinatorial optimization (e.g., 3SAT)
– ℓ1 minimization for sparsity
– turbo decoding / message-passing algorithms
– MPC/RHC

• numerical experiments/experience can re-train intuition

• theory coupled with algorithms/computation can yield far more than
either alone

LIDS Paths Ahead, November 2009 10



Why Theory is (Even More) Important

[in the presence of huge computing resources]

• theory helps define the right abstractions, frame problems

– only after this is done can we start computing
– abstraction needed to handle complexity

• theory helps determine the viability of a computational strategy

– e.g., convexity in optimization; polynomial-time algorithm

LIDS Paths Ahead, November 2009 11



Computation Alone Won’t Give You . . .

• theory gives guidance, intuition, ideas

– e.g.: feedback; Lyapunov; DP; separation (as architecture); passivity
– useful even when hypotheses don’t hold, models wrong

• theory helps us develop narratives about systems

– concepts for back-of-envelope calculations, intuition
(controllability, condition number, CAPM, graph conductance,
time-frequency trade-offs, . . . )

– simple short stories we tell our children
(‘systems with RHP zeros are hard to control’)

LIDS Paths Ahead, November 2009 12



Actionable Theory

• theory with algorithmic teeth that can (and will) be
applied/implemented

• what can be effectively computed is not obvious

• can actually do stuff

– benefit of method/research is not abstract
– can help relieve mild symptoms of analysis paralysis
– huge help in transition, outreach

[non-actionable theory (scaling laws, negative results, performance limits,
complexity analysis . . . ) is also very useful]

LIDS Paths Ahead, November 2009 13



Blurring Discipline Boundaries

• control/estimation/ML/statistics/CS/OR . . .

– ideas too powerful to be kept in ‘control’ (or other) subfield

• the good news: it’s an exciting world

– lots of opportunities (many outside academia)

• if boundaries go away, do we have (need?) an intellectual home?

– pragmatic (nurturing young talent, . . . )

• an answer: you can have a home and be worldly too

– speak a dialect (say, control theory)
– and high BBC applied math (SIAM Review)

LIDS Paths Ahead, November 2009 14



Education/Training

• focus on

– ideas (concepts, abstractions, narratives, . . . )
– together with algorithmics

• recognizing and developing computation-friendly structures

• learning theory in (partially) algorithmic context far richer

• broad exposure to neighboring disciplines, application areas

LIDS Paths Ahead, November 2009 15



Moving Forward

• need to get out more often

– export ideas (but not in dialect)
– see more styles, approaches, applications
– like travel, improves us

• need to embrace the algorithmic

LIDS Paths Ahead, November 2009 16


