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“What can be said at all can be said

clearly; and whereof one cannot

speak thereof one must be silent.”

Ludwig Wittgenstein,

Tractatus Logico-Philosophicus
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Agenda of Systems Theory

• Models and their Structure

• Fundamental Limitations (Laws)

• Uncertainty and Robustness

Robustness of performance uncertainty

at different levels of granularity

• Interconnections, Architecture and

Algorithms

Architecture = organization of

distributed algorithms and their

implementation in hardware
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Agenda of Systems Theory (cont.)

• Resource Management (Energy, Time,

Space, . . . )

A broad vision of Systems Theory aids in

providing a unified conceptual framework

for problems in different fields (Control,

Communication, Signal Processing,

Operations Research)
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• Structure

• Action

• and their Interaction
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History of Science in the Sense of Kuhn:

Incommensurability

Thomas Kuhn in his book The Structure of

Scientific Revolutions distinguished between

Normal Science and Revolutionary Science.

Revolutionary Science (e.g., Quantum

Mechanics) arises when:

Existing Theories fail to explain

phenomena

A new “paradigm” is needed to reconcile

theory and experiment

With the new paradigm, a new language

is needed
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Something like that happened in the late

fifties and early sixties in the Systems and

Control field.

Earlier revolution (1948):

Shannon Information Theory and

Invention of the Transistor

“The Double Big Bang,” to quote Viterbi
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I want to suggest that in the Systems and

Control field, there was a crisis in the field

in the fifties. Let me suggest as pointers

three manifestations of that crises.

1. Internal Stability: Feedback Control

Systems designed from an external

(input/output) point of view failed to

recognize the presence of these internal

instabilities.

2. The approach to design of

multi-input/multi-output systems was

essentially a reduction to a

single-input/single-output system

through a decoupling procedure.
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3. The attempts to deal with the Wiener

filtering problem in the nonstationary

situation (Zadeh–Regazzini) leading to

some analog of the Wiener–Hopf

equation was not very successful (no

procedure analogous to Spectral

Factorization was available).

It is also worth mentioning that the

Mathematics that was prevalent in Linear

Systems Theory at the time was Complex

Function Theory and Transform Theory.
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New Element

Computation and the Concept of a Solution

Solution not necessarily an analytical

expression

Theories leading to Algorithms
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Advent of State Space Theory

(New Paradigm)

• New Language: Algebra, Differential

Equations

• Concept of State

• State Space Representation=














dx
dt

= Fx(t) + Gu(t)

y(t) = Hx(t)

u = input, x = state, y = output

Extends to time-varying and nonlinear

systems
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Advent of State Space Theory

(New Paradigm cont.)

y(t) = He(t−t0)Fx(t0) +
∫ t

t0
He(t−s)FGu(s)ds

Reconciliation of Input-Output and Internal

(State) Point-of-view through introduction

of concepts of reachability (controllability)

and observability
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Natural Connection to Stability and Optimality

(Calculus of Variations)

Minimize

J(u, x) =
∫ t1

t0
[(x(t), Qx(t)) + (u(t), Ru(t))]dt

Q ≥ 0 , R > 0

Behavior of optimal control

u(t) = K(t)x(t) as t1 → ∞

Role of Controllability and Observability
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Deeper Aspects of Structure

Actions of semi-direct product

GL(n) ×F × GL(m)

on (F, G) controllable

(F, G) 7→ (T−1(F + GK)T, GL)

Kronecker Invariants

Transporting the algebraic variety structure

of (F, G) to the quotient

Implications in System Identification
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How should we think about Graphs beyond

thinking about them as (V, E)?

How should we think about Systems of

Coupled Differential Equations evolving over

Graphs?

What are these invariants?

We should be able to distinguish between

differential equations evolving over trees

from differential equations evolving over

graphs with loops

We need Canonical Problems
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Pattern Recognition (Vision)

“Tranformation Group” acting on the space

of objects is not given but needs to be

identified!!

See the section on Pattern Recognition in

Minsky’s paper:

“Steps Towards Artificial Intelligence,”

Proc. IEEE, 1961.
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Influence of Systems Theory

in Coding Theory

and

Signal Processing

(Intersection with Behavioral View of Systems: Willems)

Linear Systems taking values in Finite

Groups (Forney–Trott)

Minimality, Controllability and Observality,

Duality in Signal Processing

State Space Viewpoint: Influence on

Algorithms exploiting structure

Adaptive Filtering
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Filtering and Stochastic Control:

Separation Principle















dX(t) = FX(t)dt + Gu(t) + JdW (t)

dY (t) = Hx(t)d + dV (t)

Choose u(t) = ϕ(ΠtY ) to minimize

J(u, x) =

E

[

∫ t1

t0
[(X(t), QX(t)) + (u(t), Ru(t))]dt

]
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Solution

u∗(t) = K(t)X̂(t)

X̂(t) = E(X(t)|FY
t )

Separation into estimation and deterministic

control

• Infinite-time

(Controllability, Observability, Stability)

• Non-linear

Smoothing (Decoding)

Compute: P(Xs, t0 ≤ s ≤ t1)|F
Y
t1
)
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Bayesian Inference and

Statistical Mechanics

Estimate U from Y (Observations), both

belonging to separable metric spaces

Given PUY with marginal PU and PY ,

Let Q(u, y) be the Likelihood Function and

H(u, y) = − logQ(u, y) Hamiltonian

Let

h(P̃ |PU) :=
∫

U

log

(

dP̃

dPU

(u)

)

P̃ (du) if P̃ ≪ PU

+∞ otherwise,

〈H̃, P̃ 〉 :=

∫

U
H̃(u)P̃ (du) if the integral exists

+∞ otherwise,

i(H̃) := − log

∫

U
exp(−H̃(u))PU(du)

if the integral is nonzero

−∞ otherwise,
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The following proposition characterizes

h(PU |Y ( · , y)|PU) in terms of i(H( · , y)) and

vice versa

Proposition 1.1.

(i) i(H( · , y)) = min
P̃∈P(U)

{h(P̃ |PU) + 〈H( · , y), P̃ 〉};

(ii)

h(PU |Y ( · , y)|PU) = max
H̃∈M(U)

{i(H̃)−〈H̃, PU |Y ( · , y)〉};

(iii) PU |Y ( · , y) is the unique minimizer;

(iv) If Ĥ is a maximizer, then there exists a

real constant c such that

P(Ĥ(U) = H(U, y) + c) = 1.
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Bayesian Inference (cont.)

• Filtering, Smoothing has interpretation

as Free Energy Minimization

• Information-theoretic Interpretation

• Analogue of Dissipation Inequality, in

Information Quantities

• Proof of the Noisy Channel Coding

Theorem as a Limiting Bayesian

Inference Problem

(Gibbs Variational Principle: Characterization of

Translation Invariance Gibbs Measures as

Minimization of Specific Free Energy)

(See: “Variational Bayes and the Noisy

Channel Coding Theorem,” Parts 1 and 2

Newton and Mitter
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Uncertainty and Robustness

Process and Measurement Uncertainty

vs.

Model Uncertainty

Approximation of Input-Output Maps

vs.

Approximation at the State Space

Representation

Two input-output maps may be close to

each other but the dimensions of their

corresponding state spaces may be far apart

(See: “The Legacy of George Zames,”

Mitter and Tannenbaum,

IEEE Trans. on Auto. Control)
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Fundamental Problem of Control: Design of

Control Systems whose performance is

robust against uncertainties

For linear time-invariant, bounded, causal

maps from L2(R) → L2(R), which, from the

Segal–Foures theorem, is in one-to-one

correspondence with operators which are

multiplication operators by H∞-functions

Uncertainty in model represented by a ball

in H∞

Feedback: reduction of complexity

Deep connections to Operator Theory, in

particular the work of Krein
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Recent work of Y.H. Kim:

Feedback Capacity of Stationary Gaussian

Channels

The computation of feedback capacity is

posed as an Infinite Dimensional Variational

Problem and uses Systems Theory for its

solution
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Interestingly, Keynes viewed the

representation of “uncertainty” and how to

deal with uncertainty as one of the

fundamental problems of Macroeconomics

He also questioned the use of probability for

certain uncertain situations (prospect of a

European war is uncertain, the price of

copper, rate of interest twenty years hence)

Indeed, for systems which are

distributed, modeling and representation

of uncertainty remains a fundamental

issue
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Towards a Unified View

of

Communication and Control
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Feedback communication problem

Figure 1. Interconnection

Choose encoder and decoder to transmit
message over the channel to minimize the
probability of error

Channel at time t: P(dbt|a
t, bt−1) stochastic kernel

at = (a0, . . . , at)

Channel = Sequence of P(dbt|a
t, bt−1)

∣

∣

∣

t

t=1

Time ordering: Message = W, A1, B1, , AT , BT , Ŵ =

Decoded message

W = (1,2, . . . , M)

27



Code function:

Ft = {ft : Bt−1 → A : measurable}

FT =
T
∏

t=1
Ft

Channel code function: fT = (f1, . . . , ft)

Distribution on code functions:

P (dft|f
t−1)

∣

∣

∣

T

t=1

Channel code = list of M channel code

functions

Code functions are introduced to reduce the

feedback communication problem to a no

feedback communication problem.
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Average Measure of Dependence

Mutual Information

I(AT ;BT ) = EP
AT ,BT

log

(

PAT ,BT

PAT PBT

)

= EP
AT ,BT

log

(

PBT |AT

PBT

)

I(AT ;BT ) =
T
∑

t=1

I(AT ;Bt|B
t−1)

Information transmitted to the receiver

depends on future (At+1, . . . , AT).

Directed Mutual Information (Causal)

I(AT → BT ) =
T
∑

t=1

I(At;Bt|B
t−1)
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To compute Mutual Information (Directed

Mutual Information), need joint distribution

PAT ,BT(daT , dbT)

This can be done if we are given the channel

P (dbt|at, bt−1)
∣

∣

∣

T

t=1

and channel input distributions

Dt := P(dat|a
t−1, bt−1)

∣

∣

∣

T

t=1

Interconnection of channel input to channel

Channel Capacity

CT = sup
DT

1

T
I(AT → BT)

(Note: Optimization over original input

codes, not on space of code functions.)
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Figure 2: Markov Channels



Markov Channel

P (dst+1|st, at, bt)
∣

∣

∣

T

t=1
: state transition

P (dbt|st, at)|
T
t=1 : channel output

Capacity of Markov Channels

sup
D∞

lim
T→∞

1

T
I(AT → BT)(1)

It turns out that by appropriately defining

sufficient statistics (πt) (conditional

distributions of the state given information

from encoder to decoder) and controls

ut(dat|πt), and state Xt = (πt−1, At−1, Bt−1)

and instantaneous cost c(xt, ut, ut+1), (1)

can be formulated as a Partially Observed

Stochastic Control Problem.
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In turn, this can be reformulated as a

fully-observable stochastic control problem.

This problem is more like a dual control

problem since the choice of the channel

input can help the decoder identify the

channel.

This is also an example where the

information pattern is nested: The encoder

has more information than the decoder.
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Communication

and

Control
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A simple scalar distributed control problem

1 Step
Delay

%
&

'
(Channel

Noisy

Designed
Observer

Designed
Controller

%
&

'
(!

"

"

#

!

Possible Control Knowledge
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Delay
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Control Signals
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Xt

Wt

Ut−1

Scalar
System
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Xt+1 = λXt + Ut + Wt

• Unstable λ > 1, bounded initial condition and disturbance W .

• Goal: Stability = supt>0 E[|Xt|η] ≤ K for some K < ∞.

November 7, 2005 at UMD College Park



Stabilization equivalent to reliable

Communication through the loop

Signaling through the loop

Open Problem

Existence of Channel Linking

Controller and Actuator

Asymmetry in Information Transfer
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Problems for the Future

• Distributed Estimation and Control

Signalling: Controllers, Estimators have to

communicate their actions (estimates)

through the plant. There is a role for

Information Theory here.

(See recent work of Sahai on Witsenhausen problem)

See: Michael Spence (Nobel lecture)

Signalling in Retrospect and the Information

Structure of Markets

• Games as Multiple Feedback Loops

(Witsenhausen)

Related to Distributed Control
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Problems for the Future (cont.)

• Connections to Statistical Mechanics and

Field Theory

Information Theory of Message Passing

Algorithms

(See for example: Cramer’s Rule and Loop

Ensembles: A. Abdesselam and D.C. Brydges)

• Interconnections and Interactions

Optimal Transportation Theory

• What is the Nature of Experimental Work

in our Field?

Theory vs. Experiment
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Problems for the Future (cont.)

• Systems View (Dynamical) of Economic

Classifying Equilibria

(See: Global Trade and Conflicting National

Interests: Ralph E. Gomory and William J. Baumol,

MIT)
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Concluding

Remarks
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