It pays to do the right thing: Incentive mechanisms for decongesting roads

Balaji Prabhakar
Departments of CS and EE
Stanford University

With

Nancy Dougherty, Naini Gomes, Deepak Merugu, Raffi Sevlian
Stanford University

Angus Davol, Brodie Hamilton
Stanford Parking & Transportation Services

N.S. Rama and many other Infoscions
Societal networks

- Societal networks: Networks concerned with societal processes

Transportation networks – congestion

Electricity networks – generation and consumption

Recycling networks

Societal networks \equiv Resources $+$ Technological mechanisms $+$ Human actions

Better technology

Incentivize people to do the right things
Cost of congestion

- Fuel and time costs in 2005, US-wide
 A. $ 8 million
 B. $ 80 million
 C. $ 8 billion
 D. $ 80 billion

- US auto bailout: $ 25 billion
- Stimulus package for Wall Street: $ 700 billion
Fuel cost

• Fuel wasted in urban U.S. in 2005
 A. 3 million gallons
 B. 30 million gallons
 C. 3 billion gallons
 D. 30 billion gallons

• Equal to fuel consumed in all of the U.S. in 6 days!
 – 2006 data
Current methods: Charge drivers who enter “congested zone”
 – E.g. London, Singapore, Stockholm
 – Effective, but viewed as “yet another tax”

Our proposal: Charge congestors, pay decongestors
 – Put “intelligence” in vehicles, not on road
 – Deploy incrementally, no need for every one to start on day one
• Small good deeds don’t carry adequate rewards, so they aren’t performed
 – A system, which pools individual rewards, but pays out a few large sums through raffles may carry adequate incentives

• In games with low stakes, players are more risk seeking

• Two envelope game:
 – Envelope 1: $10
 – Envelope 2: $110 with 10% chance, $0 else (Ave = $11)
 – Q: Which will you choose?

• Version 2:
 – Envelope 1: $1
 – Envelope 2: $11 with 10% chance, $0 else

• Theorem: If you choose Envelope 2 in Version 1, you will also choose it in Version 2
More precisely

- Let $U(.)$ be a concave utility function with $U(0)=0$, and assume one of the following two conditions holds:
 1. $-xU''(x)/U'(x)\geq 1$ (This is the well known Relative Risk Aversion function)
 2. $xU'(x)/U(x)$ is a monotonic decreasing function.

- If $X \geq 0$ is a random variable representing payoff, then for $0<\delta<1$, $E[U(X)]-U(\delta E(X)) \geq 0$ for sufficiently small $E(X)$.
Experimenting with Societal Networks

• Transportation networks
 – The INSTANT project
 – Congestion at Stanford, etc

• Recycling: Freshman seminar in Spr 2010
The INSTANT project

- The INSTANT (Infosys-Stanford Traffic) project is a pilot study of using an incentive mechanism to decongest road traffic
Bus data

- 240 buses, 120 starting points, 4 major routes
- Data from January 2005 to June 2008
 - Pick up, drop off times; bus occupancies

<table>
<thead>
<tr>
<th>Bus #</th>
<th>Pick-up Time</th>
<th>Drop Time</th>
<th>Pick-up Point</th>
<th>Cap</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>700</td>
<td>732</td>
<td>JAYA NAGAR 4TH BLOCK /18TH MAIN</td>
<td>49</td>
<td>61</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>650</td>
<td>738</td>
<td>NANDIGARDEN / R.V.DENTAL COLLEGE</td>
<td>49</td>
<td>45</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>700</td>
<td>752</td>
<td>JAMBUSAVARIDINNE/R.V.DENTAL</td>
<td>49</td>
<td>38</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>700</td>
<td>745</td>
<td>GOTTEGERI / B.G.PARKING LOT</td>
<td>49</td>
<td>28</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

A - Occupancy
B - Standing
C - Empty Seats
Bus occupancy: Early vs late
June 2008; Bus capacity = 49

Bus occupancy: Early vs late
June 2008; Bus capacity = 49

- Early pick-up (prior to 7:15 AM)
- Late pick-up (after 7:15 AM)

Over capacity
Journey times from Jayanagar
• Warning: Portions of this material may be disturbing for some viewers. Discretion is advised.
Morning GPS trace:
Jayanagar to Infy

6:15 AM

8:15 AM
Morning GPS trace:
Jayanagar to Infy

Commute time: 29 mins.

Commute time: 82 mins.
The incentive mechanism

At a Glance

Commuter’s working day begins

Arrival (swipe-in) time

Arrival before 8.00 AM
- Earn 1.5 credits
- Incentive mechanism
- Rewards given weekly

Arrival between 8.00 – 8.30 AM
- Earn 1 credit

Arrival after 8.30 AM
- No credit
An illustration

- $2 \times 12,000 \ (20)$
- $4 \times 6,000 \ (12)$
- $14 \times 2,000 \ (7)$
- $58 \times 500 \ (3)$
Results
Average morning bus commute time (and total person-hrs saved)

- Pilot launched: 100 person-hrs
- Pilot ended:
 - Apr '09 (week 1-2): 2000 p-hrs
 - Apr '09 (week 3-4): 2200 p-hrs
 - May '09: 2400 p-hrs
 - Jun '09: 2000 p-hrs

<table>
<thead>
<tr>
<th>Month</th>
<th>Average morning bus commute time in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep '08</td>
<td>65</td>
</tr>
<tr>
<td>Oct '08</td>
<td>65</td>
</tr>
<tr>
<td>Nov '08</td>
<td>65</td>
</tr>
<tr>
<td>Dec '08</td>
<td>65</td>
</tr>
<tr>
<td>Jan '09</td>
<td>65</td>
</tr>
<tr>
<td>Feb '09</td>
<td>65</td>
</tr>
<tr>
<td>Mar '09</td>
<td>65</td>
</tr>
<tr>
<td>Apr '09 (week 1-2)</td>
<td>65</td>
</tr>
<tr>
<td>Apr '09 (week 3-4)</td>
<td>65</td>
</tr>
<tr>
<td>May '09</td>
<td>65</td>
</tr>
<tr>
<td>Jun '09</td>
<td>65</td>
</tr>
</tbody>
</table>

Person-hrs saved:
- 1400 p-hrs
- 2000 p-hrs
- 2200 p-hrs
- 2400 p-hrs
- 2600 p-hrs
- 2300 p-hrs
- 2000 p-hrs
Summary of INSTANT

- Reduction in commute times: at least 80 mins each day
- More comfortable rides
- Savings in fuel cost: Rs. 15,000 per day
- Reduction in bus fleet size: 8 buses
- Infosys will launch INSTANT at all 8 of their India offices
At Stanford

- Parking at Stanford: Reduce peak hour trips
Stanford congestion

- Agreement with Santa Clara County in 2001
 - Morning inbound limit = 3,319 vehicles, + 1% tolerance
 - Evening outbound limit = 3,446 vehicles, + 1% tolerance
Our proposal

- In collaboration with P&TS
 - RFID parking stickers
 - Incentive mechanism allows commuters to earn back part of their parking fees
 - We’ll have both deterministic and random payoffs
Formal structures

• Under formation: Institute/center on Societal Networks
• Scientific Board
 – Kenneth Arrow, Stanford
 • Joan Kenney Professor of Economics and Professor of Operations Research
 • Convening Lead Author: Intergovernmental Panel on Climate Change
 – Frank Kelly, Cambridge
 • Professor of the Mathematics of Systems, Master of Christ’s College
 • Chief Scientific Adviser to the UK Department for Transportation, 2003--2006
 – Pravin Varaiya, Berkeley
 • Nortel Networks Distinguished Professor, EECS
 • Director of California PATH Program, 1994--1997
 – Hal Varian, Berkeley/Google
 • Professor: School of Information, Haas School of Business, Dept of Economics
 • Chief Economist, Google