What to do about Hard Problems That Don’t Go Away

David Tse
U.C. Berkeley

Thanks to Anant Sahai for discussions.
Holy Grail of Network Information Theory

What is the optimal achievable performance?
Point-to-Point Communication

\[C = \max_{p_X} I(X;Y) \quad R(D) = \min_{p_{\hat{X}|X}, E[\rho(\hat{X},X)] \leq D} I(\hat{X};X) \]

Target distortion D is achievable iff \(R(D) < C \).

This result is remarkable but also sets a high bar for us.
Linear Quadratic Gaussian Networks

point-to-point (Shannon 48)
\[C = \log_2(1 + \text{SNR}) \]

multiple-access (Alshwede, Liao 70’s)
broadcast (Cover, Bergmans, Gallager 70’s)
What We Don’t Know

Unfortunately we don’t know the capacity of most other Gaussian networks.

Interference

(Best known achievable region: Han & Kobayashi 81)

(Best known achievable region: El Gamal & Cover 79)
30 Years Have Gone by.....

We are still stuck.

How to make progress?

Approximate.

But how to approximate?
An Abstraction of an Abstraction

Transmit a real number

\[x = 0.b_1 b_2 b_3 b_4 b_5 \]

Gaussian channel

Least significant bits are truncated at noise level.
Deterministic Bridge

Gaussian

Deterministic

Wireline

Approximate max-flow min-cut

Generalized max-flow min-cut

Classical max-flow min-cut

\[C = \min_{\Omega} \text{cut}(\Omega; \Omega^c) \]
Back to Canonical Problems

Interference
Capacity to within 1 bit (Etkin, T. & Wang 06)

Capacity to within 1 bit (Avestimehr, Diggavi & T. 08)
From Information to Control

(Ho, Kastner & Wong 78)
Witsenhausen Counterexample Revisited

\[\min k u_1^2 + x_2^2 \]

control

\[x_0 \sim \mathcal{N}(0, \sigma_0^2) \]

\[x_1 \]

\[\begin{array}{c}
\mathcal{C}_1 \\
\end{array} \]

\[u_1 \]

\[\mathcal{C}_2 \]

\[w \sim \mathcal{N}(0, 1) \]

estimate

\[b_1 b_2 \cdots b_n b_{n+1} \cdots \]

Constant-factor optimality.
(Park, Grover & Sahai 09)
Lessons Learnt

• Don’t be obsessed with a specific model.

• Don’t be obsessed with exact solutions.

• Be obsessed with basic phenomena in one’s field.

• Making progress on core problems can yield side benefits.

• Making progress on core problems in one’s field can lead to connections with other fields.