What to do about Hard Problems That Don't Go Away

David Tse
U.C. Berkeley

Thanks to Anant Sahai for discussions.

Holy Grail of Network Information Theory

What is the optimal achievable performance?

Point-to-Point Communication

Shannon 48

Fig. 1-Schematic diagram of a general communication system.

$$
C=\max _{p_{X}} I(X ; Y) \quad R(D)=\min _{p_{\hat{X} \mid X}, E[\rho(\hat{X}, X)] \leq D} I(\hat{X} ; X)
$$

Target distortion D is achievable iff $R(D)<C$.

This result is remarkable but also sets a high bar for us.

Linear Quadratic Gaussian Networks

point-to-point (Shannon 48)

$$
C=\log _{2}(1+\mathrm{SNR})
$$

multiple-access (Alshwede, Liao 70's) (Cover, Bergmans, Gallager 70's)

What We Don't Know

Unfortunately we don't know the capacity of most other Gaussian networks.

(Best known achievable region: Han \& Kobayashi 81)

(Best known achievable region: El Gamal \& Cover 79)

30 Years Have Gone by.....

We are still stuck.

How to make progress?

Approximate.

But how to approximate?

An Abstraction of an Abstraction

Transmit a real number
$x=0 . b_{1} b_{2} b_{3} b_{4} b_{5}$

Gaussian channel

Determinisistic channel

Deterministic Bridge

Approximate max-flow min-cut

Generalized
max-flow min-cut max-flow min-cut

Back to Canonical Problems

Capacity to within 1 bit (Etkin, T. \& Wang 06)

Capacity to within 1 bit (Avestimehr,Diggavi \& T. 08)

From Information to Control

(Ho, Kastner \& Wong 78)

Witsenhausen Counterexample Revisited

Ratio of (linear +DPC) upper and the
new lower bound

Constant-factor optimality. (Park,Grover \& Sahai 09)

Lessons Learnt

- Don't be obsessed with a specific model.
- Don't be obsessed with exact solutions.
- Be obsessed with basic phenomena in one's field.
- Making progress on core problems can yield side benefits.
- Making progress on core problems in one's field can lead to connections with other fields.

