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§1. High-dimensional data: Challenges and
opportunities
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◮ natural language processing: p word frequencies over n documents
◮ financial engineering: p stocks sampled at n distinct times
◮ social network analysis: p senators vote on n bills
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◮ explosion in computational costs with dimension
◮ statistical curse: sample size n required to achieve error δ grows quickly

with p (often exponentially)

blessings of dimensionality:
◮ concentration of measure: high-dimensional quantities can be remarkably

predictable
◮ hidden “effective” dimensionalities: sparsity in vectors/matrices;

eigen-decay in matrices/operators; Markov relations, latent variables etc.



Example: Eigenanalysis in high-dimensions

Set-up: Collect n samples {Yi}
n
i=1 of zero-mean random vector with

covariance Σ ∈ R
p×p.

Goal: Estimate eigenstructure (eigenvalues and vectors) of Σ, say using the

sample covariance Σ̂n = 1
n

∑n

i=1 YiY
T
i . Look at scaling as (n, p) → +∞.

Uses/relevance: Principal components analysis, canonical correlation
analysis, spectral clustering etc. . . .
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Eigenanalysis with structural constraints:

1 Some models:
◮ Spiked covariance models with sparse eigenvectors
◮ Covariance matrices with rapid eigendecay
◮ Inverse covariance matrices with Markov structure (i.e., Gaussian graphical

models)

2 Some estimators:
◮ thresholded versions of sample covariance
◮ regularized M -estimators (based on solving convex programs)
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◮ Pairwise MRF (Ising model, 1923)

P(x1, . . . , xp) =
1

Z(θ)
exp
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X
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¯
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◮ Triplet MRF

P(x1, . . . , xp) =
1

Z(θ)
exp

˘

X

s∈V

θsxs +
X

(s,t)∈E2

θstxsxt +
X

(s,t,u)∈E3

θstuxsxtxu

¯

.

(hyper)graph structure enforces that θuv = 0 for all (uv) /∈ E



Example: Learning social network structure
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Graphical model fit to voting records of US senators (using technique from

Ravikumar et al., 2008)



Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled
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§2. Trade-offs between computation and statistics

given a fixed set of resources (storage, communication, processing), two
different types of costs:

◮ costs associated with collecting data (i.e., running experiments,
simulations, MCMC sampling etc.)

◮ costs associated with performing statistical inference
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◮ costs associated with performing statistical inference

for many problems, there are hierarchies of methods ordered by
computational complexity:

◮ “naive” methods (e.g., greedy search, thresholding, heuristics etc.)
◮ relaxation hierarchies (e.g., via LP, SDP and other convex programs)
◮ optimal procedures (may require exponential time or space)

some open questions:
◮ for fixed sample size n, when does more computation guarantee greater

accuracy?
◮ can we derive fundamental limits that include upper bounds on

computation?
◮ does computational complexity versus sample size n exhibit non-monotonic

behavior?
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Empirical performance of thresholding
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Empirical performance of thresholding
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More computationally expensive SDP relaxation
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Summary

contributions possible/required from multiple disciplines:
◮ electrical engineering
◮ computer science
◮ statistics
◮ applied mathematics

optimization theory and statistics:
◮ need theory for analyzing random ensembles of optimization problems
◮ need algorithms for solving large-scale instances

control theory and statistics:
◮ on-line learning introduces interesting dynamical aspects
◮ stochastic approximation

information-theoretic methods in learning:
◮ statistical inference ≡ (non-orthodox) communication channel:

⋆ codewords/codebook ≡ parameter θ in set Θ
⋆ drawing samples ≡ using channel

◮ fundamental lower bounds via Fano and other methods

applied probability and statistics:
◮ large deviations; concentration of measure
◮ empirical process theory



Traditional asymptotics
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Challenge: High-dimensional scaling laws
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Challenge: High-dimensional scaling laws
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Example: (Sparse) linear regression

= +n
S

wy X β∗

Sc

n × p

Set-up:
• vector β∗ ∈ R

p with at most k ≪ p non-zero entries
• noisy observations y = Xβ∗ + w

Goal: Generate “good” estimate β̂ of β∗ (various loss functions: prediction,
ℓ2-loss, model selection)

Applications: Imaging; data-base sketching; compressed sensing.

Some relevant work: Portnoy, 1984; Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001;

Tropp, 2004; Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005;

Haupt & Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Tsybakov et al., 2008



Example: Structured matrix estimation
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Set-up: Samples from random vector with structured covariance Σ, or
structured inverse covariance Θ.

Goal: Produce estimates Σ̂ (or Θ̂) close in Frobenius or spectral norm.

Applications: Social network analysis, computer vision, financial time series
analysis, geostatistics....

Some relevant work: Marcenko & Pastur, 1967; Geman, 1980; Bai, 1999; Ledoit & Wolf,

2003; Bickel & Levina, 2006, 2007; d’Asprémont et al., 2007; El Karoui, 2007; Rothman et

al., 2007; Yuan & Lin, 2007; Ravikumar et al., 2008


