# Paths Ahead in the Science of Information and Decision Systems

Martin Wainwright

UC Berkeley Departments of Statistics, and EECS

Paths Ahead Symposium, MIT

- data sets: n samples in p dimensions
  - $\blacktriangleright$  computational biology: p genes measured in n humans
  - computer vision: p textures or objects, n images
  - $\blacktriangleright$  natural language processing: p word frequencies over n documents
  - financial engineering: p stocks sampled at n distinct times
  - social network analysis: p senators vote on n bills

- data sets: n samples in p dimensions
  - $\blacktriangleright$  computational biology: p genes measured in n humans
  - computer vision: p textures or objects, n images
  - $\blacktriangleright$  natural language processing: p word frequencies over n documents
  - financial engineering: p stocks sampled at n distinct times
  - social network analysis: p senators vote on n bills
- modern data sets often "high-dimensional" in nature:
  - massive: n and p often very large
  - "large p and small less large n": i.e.,  $p \approx n$  or  $p \gg n$

- data sets: n samples in p dimensions
  - $\blacktriangleright$  computational biology: p genes measured in n humans
  - computer vision: p textures or objects, n images
  - $\blacktriangleright$  natural language processing: p word frequencies over n documents
  - financial engineering: p stocks sampled at n distinct times
  - social network analysis: p senators vote on n bills
- modern data sets often "high-dimensional" in nature:
  - massive: n and p often very large
  - ▶ "large p and small less large n": i.e.,  $p \approx n$  or  $p \gg n$
- curses of dimensionality:
  - $\blacktriangleright$  explosion in computational costs with dimension
  - statistical curse: sample size n required to achieve error  $\delta$  grows quickly with p (often exponentially)

- $\bullet$  data sets: n samples in p dimensions
  - $\blacktriangleright$  computational biology: p genes measured in n humans
  - computer vision: p textures or objects, n images
  - natural language processing: p word frequencies over n documents
  - financial engineering: p stocks sampled at n distinct times
  - social network analysis: p senators vote on n bills
- modern data sets often "high-dimensional" in nature:
  - $\blacktriangleright$  massive: n and p often very large
  - "large p and small less large n": i.e.,  $p \approx n$  or  $p \gg n$
- curses of dimensionality:
  - $\blacktriangleright$  explosion in computational costs with dimension
  - statistical curse: sample size n required to achieve error  $\delta$  grows quickly with p (often exponentially)
- blessings of dimensionality:
  - $\begin{tabular}{c} \hline concentration of measure: \\ \hline predictable \end{tabular} high-dimensional quantities can be remarkably \\ \hline \hline predictable \end{tabular} \end{tabular} \end{tabular}$
  - <u>hidden "effective" dimensionalities</u>: sparsity in vectors/matrices; eigen-decay in matrices/operators; Markov relations, latent variables etc.

# **Example: Eigenanalysis in high-dimensions**

**Set-up:** Collect *n* samples  $\{Y_i\}_{i=1}^n$  of zero-mean random vector with covariance  $\Sigma \in \mathbb{R}^{p \times p}$ .

**Goal:** Estimate eigenstructure (eigenvalues and vectors) of  $\Sigma$ , say using the sample covariance  $\widehat{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^T$ . Look at scaling as  $(n, p) \to +\infty$ .

**Uses/relevance:** Principal components analysis, canonical correlation analysis, spectral clustering etc. ...

### **Example: Eigenanalysis in high-dimensions**



Eigenspectrum concentrates on interval  $\left[\left(1-\sqrt{\frac{p}{n}}\right)^2, \left(1+\sqrt{\frac{p}{n}}\right)^2\right]$ .

(e.g., Marcenko & Pastur, 1967, Geman, 1980, Szarek, 1991)

# **Example: Eigenanalysis in high-dimensions**

**Set-up:** Collect *n* samples  $\{Y_i\}_{i=1}^n$  of zero-mean random vector with covariance  $\Sigma \in \mathbb{R}^{p \times p}$ .

**Goal:** Estimate eigenstructure (eigenvalues and vectors) of  $\Sigma$ , say using the sample covariance  $\widehat{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^T$ . Look at scaling as  $(n, p) \to +\infty$ .

**Uses/relevance:** Principal components analysis, canonical correlation analysis, spectral clustering etc. ...

#### Eigenanalysis with structural constraints:

- Some models:
  - ▶ Spiked covariance models with sparse eigenvectors
  - ▶ Covariance matrices with rapid eigendecay
  - ▶ Inverse covariance matrices with Markov structure (i.e., Gaussian graphical models)

#### **2** Some estimators:

- ▶ thresholded versions of sample covariance
- ▶ regularized *M*-estimators (based on solving convex programs)

- random variable  $X_s$  at node s takes values in discrete space (e.g.,  $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:

- random variable  $X_s$  at node s takes values in discrete space (e.g.,  $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:
  - ▶ Independence model (biased but independent coin flips):

$$\mathbb{P}(x_1,\ldots,x_p) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s\big\}.$$

- random variable  $X_s$  at node s takes values in discrete space (e.g.,  $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:
  - ▶ Independence model (biased but independent coin flips):

$$\mathbb{P}(x_1,\ldots,x_p) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s\big\}.$$

▶ Pairwise MRF (Ising model, 1923)

$$\mathbb{P}(x_1,\ldots,x_p) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s\in V} \theta_s x_s + \sum_{(s,t)\in E} \theta_{st} x_s x_t\big\}.$$

- random variable  $X_s$  at node s takes values in discrete space (e.g.,  $\mathcal{X} = \{-1, +1\})$
- hierarchies of probability distributions:
  - ▶ Independence model (biased but independent coin flips):

$$\mathbb{P}(x_1,\ldots,x_p) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s \in V} \theta_s x_s\big\}.$$

▶ Pairwise MRF (Ising model, 1923)

$$\mathbb{P}(x_1,\ldots,x_p) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s\in V} \theta_s x_s + \sum_{(s,t)\in E} \theta_{st} x_s x_t\big\}.$$

▶ Triplet MRF

$$\mathbb{P}(x_1,\ldots,x_p) = \frac{1}{Z(\theta)} \exp\big\{\sum_{s\in V} \theta_s x_s + \sum_{(s,t)\in E_2} \theta_{st} x_s x_t + \sum_{(s,t,u)\in E_3} \theta_{stu} x_s x_t x_u\big\}.$$

• (hyper)graph structure enforces that  $\theta_{uv} = 0$  for all  $(uv) \notin E$ 

#### Example: Learning social network structure



Graphical model fit to voting records of US senators (using technique from Ravikumar et al., 2008)

### **Empirical behavior: Unrescaled plots**



Paths Ahead

# **Empirical behavior: Appropriately rescaled**



# $\S 2.$ Trade-offs between computation and statistics

- given a fixed set of resources (storage, communication, processing), two different types of costs:
  - costs associated with collecting data (i.e., running experiments, simulations, MCMC sampling etc.)
  - ▶ costs associated with performing statistical inference

# $\S 2.$ Trade-offs between computation and statistics

- given a fixed set of resources (storage, communication, processing), two different types of costs:
  - costs associated with collecting data (i.e., running experiments, simulations, MCMC sampling etc.)
  - ▶ costs associated with performing statistical inference
- for many problems, there are hierarchies of methods ordered by computational complexity:
  - "naive" methods (e.g., greedy search, thresholding, heuristics etc.)
  - ▶ relaxation hierarchies (e.g., via LP, SDP and other convex programs)
  - optimal procedures (may require exponential time or space)

# $\S 2.$ Trade-offs between computation and statistics

- given a fixed set of resources (storage, communication, processing), two different types of costs:
  - costs associated with collecting data (i.e., running experiments, simulations, MCMC sampling etc.)
  - ▶ costs associated with performing statistical inference
- for many problems, there are hierarchies of methods ordered by computational complexity:
  - "naive" methods (e.g., greedy search, thresholding, heuristics etc.)
  - ▶ relaxation hierarchies (e.g., via LP, SDP and other convex programs)
  - ▶ optimal procedures (may require exponential time or space)
- some open questions:
  - for fixed sample size n, when does more computation guarantee greater accuracy?
  - ► can we derive fundamental limits that include upper bounds on computation?
  - $\blacktriangleright$  does computational complexity versus sample size n exhibit non-monotonic behavior?

# **Empirical performance of thresholding**



- spiked covariance model  $\Sigma = zz^T + \sigma^2 I$
- model selection: find k-sized subset  $S \subset \{1, \ldots, p\}$  where  $z \in \mathbb{R}^p$  is non-zero
- plot the success probability  $\mathbb{P}[\widehat{S} = S^*]$  versus sample size n.

# **Empirical performance of thresholding**



• success prob. versus rescaled sample size:

$$\theta_{\rm thr}(n,p,k) = \frac{n}{k^2 \log(p-k)}$$

#### More computationally expensive SDP relaxation



# Summary

- contributions possible/required from multiple disciplines:
  - electrical engineering
  - ► computer science
  - statistics
  - applied mathematics
- optimization theory and statistics:
  - ▶ need theory for analyzing random ensembles of optimization problems
  - need algorithms for solving large-scale instances
- control theory and statistics:
  - ▶ on-line learning introduces interesting dynamical aspects
  - stochastic approximation
- information-theoretic methods in learning:
  - ▶ statistical inference  $\equiv$  (non-orthodox) communication channel:
    - ★ codewords/codebook ≡ parameter  $\theta$  in set  $\Theta$
    - ★ drawing samples  $\equiv$  using channel
  - ▶ fundamental lower bounds via Fano and other methods
- applied probability and statistics:
  - ► large deviations; concentration of measure
  - empirical process theory

# **Traditional asymptotics**



# Challenge: High-dimensional scaling laws



# Challenge: High-dimensional scaling laws



# Example: (Sparse) linear regression



Set-up: • vector  $\beta^* \in \mathbb{R}^p$  with at most  $k \ll p$  non-zero entries

• noisy observations 
$$y = X\beta^* + w$$

**Goal:** Generate "good" estimate  $\hat{\beta}$  of  $\beta^*$  (various loss functions: prediction,  $\ell_2$ -loss, model selection)

Applications: Imaging; data-base sketching; compressed sensing.

Some relevant work: Portnoy, 1984; Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001; Tropp, 2004; Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005; Haupt & Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Tsybakov et al., 2008

# **Example: Structured matrix estimation**



**Set-up:** Samples from random vector with structured covariance  $\Sigma$ , or structured inverse covariance  $\Theta$ .

**Goal:** Produce estimates  $\hat{\Sigma}$  (or  $\hat{\Theta}$ ) close in Frobenius or spectral norm.

**Applications:** Social network analysis, computer vision, financial time series analysis, geostatistics....

Some relevant work: Marcenko & Pastur, 1967; Geman, 1980; Bai, 1999; Ledoit & Wolf, 2003; Bickel & Levina, 2006, 2007; d'Asprémont et al., 2007; El Karoui, 2007; Rothman et al., 2007; Yuan & Lin, 2007; Ravikumar et al., 2008