Paths Ahead in the Science of Information and Decision Systems

Martin Wainwright
UC Berkeley
Departments of Statistics, and EECS
Paths Ahead Symposium, MIT

§1. High-dimensional data: Challenges and opportunities

- data sets: n samples in p dimensions
- computational biology: p genes measured in n humans
- computer vision: p textures or objects, n images
- natural language processing: p word frequencies over n documents
- financial engineering: p stocks sampled at n distinct times
- social network analysis: p senators vote on n bills

§1. High-dimensional data: Challenges and opportunities

- data sets: n samples in p dimensions
- computational biology: p genes measured in n humans
- computer vision: p textures or objects, n images
- natural language processing: p word frequencies over n documents
- financial engineering: p stocks sampled at n distinct times
- social network analysis: p senators vote on n bills
- modern data sets often "high-dimensional" in nature:
- massive: n and p often very large
- "large p and small less large n ": i.e., $p \approx n$ or $p \gg n$

§1. High-dimensional data: Challenges and opportunities

- data sets: n samples in p dimensions
- computational biology: p genes measured in n humans
- computer vision: p textures or objects, n images
- natural language processing: p word frequencies over n documents
- financial engineering: p stocks sampled at n distinct times
- social network analysis: p senators vote on n bills
- modern data sets often "high-dimensional" in nature:
- massive: n and p often very large
- "large p and small less large n ": i.e., $p \approx n$ or $p \gg n$
- curses of dimensionality:
- explosion in computational costs with dimension
- statistical curse: sample size n required to achieve error δ grows quickly with p (often exponentially)

§1. High-dimensional data: Challenges and opportunities

- data sets: n samples in p dimensions
- computational biology: p genes measured in n humans
- computer vision: p textures or objects, n images
- natural language processing: p word frequencies over n documents
- financial engineering: p stocks sampled at n distinct times
- social network analysis: p senators vote on n bills
- modern data sets often "high-dimensional" in nature:
- massive: n and p often very large
- "large p and small less large n ": i.e., $p \approx n$ or $p \gg n$
- curses of dimensionality:
- explosion in computational costs with dimension
- statistical curse: sample size n required to achieve error δ grows quickly with p (often exponentially)
- blessings of dimensionality:
- concentration of measure: high-dimensional quantities can be remarkably predictable
- hidden "effective" dimensionalities: sparsity in vectors/matrices; eigen-decay in matrices/operators; Markov relations, latent variables etc.

Example: Eigenanalysis in high-dimensions

Set-up: Collect n samples $\left\{Y_{i}\right\}_{i=1}^{n}$ of zero-mean random vector with covariance $\Sigma \in \mathbb{R}^{p \times p}$.

Goal: Estimate eigenstructure (eigenvalues and vectors) of Σ, say using the sample covariance $\widehat{\Sigma}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{T}$. Look at scaling as $(n, p) \rightarrow+\infty$.

Uses/relevance: Principal components analysis, canonical correlation analysis, spectral clustering etc. ...

Example: Eigenanalysis in high-dimensions

Eigenspectrum concentrates on interval $\left[\left(1-\sqrt{\frac{p}{n}}\right)^{2},\left(1+\sqrt{\frac{p}{n}}\right)^{2}\right]$.
(e.g., Marcenko \& Pastur, 1967, Geman, 1980, Szarek, 1991)

Example: Eigenanalysis in high-dimensions

Set-up: Collect n samples $\left\{Y_{i}\right\}_{i=1}^{n}$ of zero-mean random vector with covariance $\Sigma \in \mathbb{R}^{p \times p}$.

Goal: Estimate eigenstructure (eigenvalues and vectors) of Σ, say using the sample covariance $\widehat{\Sigma}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{T}$. Look at scaling as $(n, p) \rightarrow+\infty$.

Uses/relevance: Principal components analysis, canonical correlation analysis, spectral clustering etc. ...

Eigenanalysis with structural constraints:
(1) Some models:

- Spiked covariance models with sparse eigenvectors
- Covariance matrices with rapid eigendecay
- Inverse covariance matrices with Markov structure (i.e., Gaussian graphical models)
(2) Some estimators:
- thresholded versions of sample covariance
- regularized M-estimators (based on solving convex programs)

Example: Learning graphical models

- random variable X_{s} at node s takes values in discrete space (e.g., $\mathcal{X}=\{-1,+1\})$
- hierarchies of probability distributions:

Example: Learning graphical models

- random variable X_{s} at node s takes values in discrete space (e.g., $\mathcal{X}=\{-1,+1\})$
- hierarchies of probability distributions:
- Independence model (biased but independent coin flips):

$$
\mathbb{P}\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{s \in V} \theta_{s} x_{s}\right\} .
$$

Example: Learning graphical models

- random variable X_{s} at node s takes values in discrete space (e.g., $\mathcal{X}=\{-1,+1\})$
- hierarchies of probability distributions:
- Independence model (biased but independent coin flips):

$$
\mathbb{P}\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{s \in V} \theta_{s} x_{s}\right\}
$$

- Pairwise MRF (Ising model, 1923)

$$
\mathbb{P}\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right\}
$$

Example: Learning graphical models

- random variable X_{s} at node s takes values in discrete space (e.g., $\mathcal{X}=\{-1,+1\})$
- hierarchies of probability distributions:
- Independence model (biased but independent coin flips):

$$
\mathbb{P}\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{s \in V} \theta_{s} x_{s}\right\} .
$$

- Pairwise MRF (Ising model, 1923)

$$
\mathbb{P}\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right\} .
$$

- Triplet MRF

$$
\mathbb{P}\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E_{2}} \theta_{s t} x_{s} x_{t}+\sum_{(s, t, u) \in E_{3}} \theta_{s t u} x_{s} x_{t} x_{u}\right\} .
$$

- (hyper)graph structure enforces that $\theta_{u v}=0$ for all $(u v) \notin E$

Example: Learning social network structure

Democratic/Republican subgraphs

Graphical model fit to voting records of US senators (using technique from Ravikumar et al., 2008)

Empirical behavior: Unrescaled plots

Empirical behavior: Appropriately rescaled

$\S 2$. Trade-offs between computation and statistics

- given a fixed set of resources (storage, communication, processing), two different types of costs:
- costs associated with collecting data (i.e., running experiments, simulations, MCMC sampling etc.)
- costs associated with performing statistical inference

§2. Trade-offs between computation and statistics

- given a fixed set of resources (storage, communication, processing), two different types of costs:
- costs associated with collecting data (i.e., running experiments, simulations, MCMC sampling etc.)
- costs associated with performing statistical inference
- for many problems, there are hierarchies of methods ordered by computational complexity:
- "naive" methods (e.g., greedy search, thresholding, heuristics etc.)
- relaxation hierarchies (e.g., via LP, SDP and other convex programs)
- optimal procedures (may require exponential time or space)

§2. Trade-offs between computation and statistics

- given a fixed set of resources (storage, communication, processing), two different types of costs:
- costs associated with collecting data (i.e., running experiments, simulations, MCMC sampling etc.)
- costs associated with performing statistical inference
- for many problems, there are hierarchies of methods ordered by computational complexity:
- "naive" methods (e.g., greedy search, thresholding, heuristics etc.)
- relaxation hierarchies (e.g., via LP, SDP and other convex programs)
- optimal procedures (may require exponential time or space)
- some open questions:
- for fixed sample size n, when does more computation guarantee greater accuracy?
- can we derive fundamental limits that include upper bounds on computation?
- does computational complexity versus sample size n exhibit non-monotonic behavior?

Empirical performance of thresholding

- spiked covariance model $\Sigma=z z^{T}+\sigma^{2} I$
- model selection: find k-sized subset $S \subset\{1, \ldots, p\}$ where $z \in \mathbb{R}^{p}$ is non-zero
- plot the success probability $\mathbb{P}\left[\widehat{S}=S^{*}\right]$ versus sample size n.

Empirical performance of thresholding

- success prob. versus rescaled sample size:

$$
\theta_{\mathrm{thr}}(n, p, k)=\frac{n}{k^{2} \log (p-k)}
$$

More computationally expensive SDP relaxation

Probability versus rescaled sample size

$$
\theta_{\mathrm{sdp}}(n, p, k)=\frac{n}{k \log (p-k)}
$$

Summary

- contributions possible/required from multiple disciplines:
- electrical engineering
- computer science
- statistics
- applied mathematics
- optimization theory and statistics:
- need theory for analyzing random ensembles of optimization problems
- need algorithms for solving large-scale instances
- control theory and statistics:
- on-line learning introduces interesting dynamical aspects
- stochastic approximation
- information-theoretic methods in learning:
- statistical inference \equiv (non-orthodox) communication channel:
\star codewords/codebook \equiv parameter θ in set Θ
\star drawing samples \equiv using channel
- fundamental lower bounds via Fano and other methods
- applied probability and statistics:
- large deviations; concentration of measure
- empirical process theory

Traditional asymptotics

Log MSE versus sample size

Challenge: High-dimensional scaling laws

Log MSE versus sample size (different problem sizes)

Challenge: High-dimensional scaling laws

Log error (MSE) versus (n, p)

Example: (Sparse) linear regression

Set-up:

- vector $\beta^{*} \in \mathbb{R}^{p}$ with at most $k \ll p$ non-zero entries
- noisy observations $y=X \beta^{*}+w$

Goal: Generate "good" estimate $\widehat{\beta}$ of β^{*} (various loss functions: prediction, ℓ_{2}-loss, model selection)

Applications: Imaging; data-base sketching; compressed sensing.
Some relevant work: Portnoy, 1984; Tibshirani, 1996; Chen et al., 1998; Donoho/Xuo, 2001;
Tropp, 2004; Fuchs, 2004; Meinshausen/Buhlmann, 2005; Candes/Tao, 2005; Donoho, 2005;
Haupt \& Nowak, 2006; Zhao/Yu, 2006; Wainwright, 2006; Tsybakov et al., 2008

Example: Structured matrix estimation

Set-up: Samples from random vector with structured covariance Σ, or structured inverse covariance Θ.

Goal: Produce estimates $\widehat{\Sigma}$ (or $\widehat{\Theta}$) close in Frobenius or spectral norm.
Applications: Social network analysis, computer vision, financial time series analysis, geostatistics....

Some relevant work: Marcenko \& Pastur, 1967; Geman, 1980; Bai, 1999; Ledoit \& Wolf, 2003; Bickel \& Levina, 2006, 2007; d'Asprémont et al., 2007; El Karoui, 2007; Rothman et al., 2007; Yuan \& Lin, 2007; Ravikumar et al., 2008

