

À la Recherche du Temps Perdu

Jan C. Willems K.U. Leuven

Paths Ahead in the Science of Information and Decision Systems

MIT, Nov. 13, 2009

– p. 1/17

Jan C. Willems K.U. Leuven

Paths Ahead in the Science of Information and Decision Systems

MIT, Nov. 13, 2009

- p. 2/17

A tribute to Sanjoy Mitter

on the occasion of his retirement

The MIT EE Control Group — 1970

The MIT Control Group — 1970

SYSTEMS

Features

- Open
- Interconnected

Modular

Dynamic

- Open
- Interconnected
- Modular
- **Dynamic**

The ever-increasing computing power allows to model complex interconnected systems <mark>accurately</mark> by tearing, zooming, and linking.

→ Simulation, model based control, model based thinking, ...

TEARING, ZOOMING, and LINKING

;; Model the behavior of selected variables !!

;; Model the behavior of selected variables !!

Proceed until subsystems ('modularity') are obtained whose model is known, from first principles, or stored in a database.

Tearing, zooming, and linking

 \rightarrow computer assisted modeling

& 'Paths Ahead'

OPEN and CONNECTED

Accurate modeling requires

- 1. The right concepts for describing open (physical) systems
- 2. The right concepts for describing (physical) interconnections

Accurate modeling requires

- 1. The right concepts for describing open (physical) systems
- 2. The right concepts for describing (physical) interconnections

Did we, system theorists, get the physics right?

Input/output systems

Input/output thinking is inappropriate for modeling physical systems.

A physical system is not a signal processor.

This observation \rightarrow the behavioral approach in which an open system is simply viewed as a relation, as a set of constraints...

The basic idea

A system interacts with its environment through terminals. On each terminal, there are (many) variables, e.g.

- voltage and current
- force and position
- pressure and mass-flow
- temperature and heat-flow

The behavior := all possible trajectories of these variables.

Signal flow graphs

View interconnected systems in terms of signal flow graphs:

Interconnection is viewed as output-to-input assignment.

Signal flow graphs

Not appropriate for describing interconnected physical systems.

A physical system is not a signal processor.

Linking means equating the variables that 'live' on the interconnected terminals.

$$V_N = V_{N'} \text{ and } I_N + I_{N'} = 0$$

$$q_N = q_{N'} \text{ and } F_N + F_{N'} = 0$$

$$T_N = T_{N'} \text{ and } Q_N + Q_{N'} = 0$$

$$p_N = p_{N'} \text{ and } f_N + f_{N'} = 0$$

Interconnection = variable sharing.

Favorite textbooks

Signals Systems

Bernd Girod

WILEY

Rudolf Rabenstein Alexander Stenger

Signals and Systems

Made Ridiculously Simple

SI(

Roi

Will

D. 1

Continu

Favorite textbooks

The behavioral approach to open and interconnected systems, *Control Systems Magazine*, volume 27, pages 46-99, 2007.

Copies of the lecture frames will be available from/at

Jan.Willems@esat.kuleuven.be http://www.esat.kuleuven.be/~jwillems

And, especially, 'thank you', Sanjoy

